Skip to main content
Log in

Light Absorption by the Clusters of Colloidal Gold and Silver Particles Formed During Slow and Fast Aggregation

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Spectra of absorption (400–800 nm) by the aggregates of colloidal gold (5, 15, and 30 nm in diameter) and silver (20 nm in diameter) particles were studied experimentally and theoretically. It was revealed that, during fast aggregation corresponding to the diffusion-limited cluster aggregation (DLCA), the pattern of spectra is dependent on the size of primary particles. Spectra with the additional absorption maximum in the red region are observed for 15 and 30 nm gold and 20 nm silver particles, while the absorption spectrum for 5 nm particles is characterized by only one maximum shifted to the red region. The slow aggregation resulted in a decrease in plasmon absorption peak with no marked shift to the red region and to the broadening of long-wave absorption wing. From data on electron microscopy, typical branched DLCA-clusters were formed during fast aggregation, whereas small compact aggregates and a noticeable number of single particles were observed in a system during slow aggregation. The computer model of the diffusion-limited cluster-cluster aggregation was used to explain these results. Optical properties of aggregates were calculated using coupled dipole method (CDM or DDA) and the exact method of a multipole expansion. Corrections for the size effect were introduced into the bulk optical constants of metals for nanosized particles. It was shown that a modified version of DDA (Markel et al.,Phys. Rev. B, 1996, vol. 53, no. 5, p. 2425) allows us to explain the pattern of experimental spectra of DLCA-aggregates and their dependence on a monomer size. The exact method was applied to calculate the extinction cross sections of metallic aggregates demonstrating strong electrodynamic interaction between particles. The number of higher multipoles that are required to adequately describe this interaction is much larger than the number of terms of an ordinary Mie series and is the main obstacle to the exact calculation of the spectra of metallic aggregates with a large number of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bohren, C.F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983. Translated under the title Pogloshchenie i rasseyanie sveta malymi chastitsami, Moscow: Mir, 1986.

    Google Scholar 

  2. Shalaev, V.M. and Shtokman, M.I., Zh. Eksp. Teor. Fiz., 1987, vol. 92,no. 2, p. 509.

    Google Scholar 

  3. Markel', V.A., Muratov, L.S., and Shtokman, M.I., Zh. Eksp. Teor. Fiz., 1990, vol. 98,no. 3, p. 819.

    Google Scholar 

  4. Markel, V.A., Shalaev, V.M., Stechel, E.B., et al., Phys. Rev. B, 1996, vol. 53,no. 5, p. 2425.

    Google Scholar 

  5. Rautian, S.G., Safonov, V.P., Chubakov, P.A., et al., Pis'ma Zh. Eksp. Teor. Fiz., 1988, vol. 47,no. 4, p. 200.

    Google Scholar 

  6. Butenko, A.V., Chubakov, P.A., Danilova, Yu.E., et al., Z. Phys. D, 1990, vol. 17, p. 283.

    Google Scholar 

  7. Shalaev, V.M., Poliakov, E.Y., and Markel, V.A., Phys. Rev. B, 1996, vol. 53,no. 5, p. 2437.

    Google Scholar 

  8. Tsai, D.R., Kovacs, J., Wang, Zh., et al., Phys. Rev. Lett., 1994, vol. 72,no. 26, p. 4149.

    Google Scholar 

  9. Karpov, S.V., Popov, A.K., Rautian, S.G., et al., Pis'ma Zh. Eksp. Teor. Fiz., 1988, vol. 48,no. 10, p. 528.

    Google Scholar 

  10. Safonov, V.P., Shalaev, V.M., Markel, V.A., et al., Phys. Rev. Lett., 1998, vol. 80,no. 5, p. 1102.

    Google Scholar 

  11. Bruning, J.H. and Lo, Y.T., IEEE Trans. Antennas Propag., 1971, vol. AP-19, p. 378; p. 391.

    Google Scholar 

  12. Borghese, F., Denti, P., Toscano, G., and Sindoni, O.I., Appl. Opt., 1979, vol. 18,no. 1, p. 116.

    Google Scholar 

  13. Gerardy, J.M. and Ausloos, M., Phys. Rev. B, 1982, vol. 25,no. 6, p. 4204.

    Google Scholar 

  14. Mackowski, D.W., J. Opt. Soc. Am. A, 1994, vol. 11,no. 11, p. 2851.

    Google Scholar 

  15. Fuller, K., J. Opt. Soc. Am. A, 1994, vol. 11,no. 12, p. 3251.

    Google Scholar 

  16. Xu, Y.-L., Appl. Opt., 1995, vol. 34,no. 21, p. 4573.

    Google Scholar 

  17. Mackowski, D.W. and Mishchenko, M.I., J. Opt. Soc. Am. A, 1996, vol. 13,no. 11, p. 2266.

    Google Scholar 

  18. Xu, Y.-L., Appl. Opt., 1997, vol. 36,no. 36, p. 9496.

    Google Scholar 

  19. Purcell, E.M. and Pennypacker, C.R., Astrophys. J., 1973, vol. 186,no. 2, p. 705.

    Google Scholar 

  20. Ravey, J.-C., J. Colloid Interface Sci., 1974, vol. 46, p. 139.

    Google Scholar 

  21. Jones, A.R., Proc. Roy. Soc. London, Ser. A, 1979, vol. 366, p. 111.

    Google Scholar 

  22. Chiappetta, P., J. Phys. A: Math. Gen., 1980, vol. 13, p. 2101.

    Google Scholar 

  23. Draine, B.T., Astrophys. J., 1988, vol. 333,no. 2, p. 848.

    Google Scholar 

  24. Draine, B.T. and Flatau, P.J., J. Opt. Soc. Am. A, 1994, vol. 11,no. 4, p. 1491.

    Google Scholar 

  25. Lumme, K. and Rahola, J., Astrophys. J., 1994, vol. 425, p. 653.

    Google Scholar 

  26. Lakhtakia, A. and Mulholland, G.W., J. Res. Natl. Inst. Stand. Technol., 1993, vol. 98,no. 6, p. 699.

    Google Scholar 

  27. Quinten, M. and Kreibig, U., Surf. Sci., 1986, vol. 172,no. 3, p. 557.

    Google Scholar 

  28. Quinten, M. and Kreibig, U., in Optical Particle Sizing: Theory and Practice, Gouesbet, G. and Grehan, G., Eds., New York: Plenum, 1988, p. 249.

    Google Scholar 

  29. Quinten, M., Schönauer, D., and Kreibig, U., Z. Phys. D, 1989, vol. 12, p. 521.

    Google Scholar 

  30. Quinten, M. and Kreibig, U., Appl. Opt., 1993, vol. 32,no. 30, p. 6173.

    Google Scholar 

  31. Kahlau, T., Quinten, M., and Kreibig, U., Appl. Phys. A, 1996, vol. 62, p. 19.

    Google Scholar 

  32. Dykman, L.A. and Bogatyrev, V.A., Biokhimiya, 1997, vol. 62,no. 5, p. 411.

    Google Scholar 

  33. Schalkhammer, T., Chem. Monthly, 1998, vol. 129,no. 10, p. 1067.

    Google Scholar 

  34. Collier, C.P., Vossmeyer, T., and Heath, J.R., Ann. Rev. Phys. Chem., 1998, vol. 49, p. 371.

    Google Scholar 

  35. Khlebtsov, N.G., Bogatyrev, V.A., Dykman, L.A., and Mel'nikov, A.G., Kolloidn. Zh., 1995, vol. 57,no. 3, p. 412; Erratum: Kolloidn. Zh., 1996, vol. 58, no. 1, p. 144.

    Google Scholar 

  36. Khlebtsov, N.G., Bogatyrev, V.A., Dykman, L.A., and Melnikov, A.G., J. Colloid Interface Sci., 1996, vol. 180, p. 436.

    Google Scholar 

  37. Khlebtsov, N.G., Bogatyrev, V.A., Dykman, L.A., and Mel'nikov, A.G., Opt. Spektrosk., 1996, vol. 80,no. 1, p. 128.

    Google Scholar 

  38. Tsar'kova, L.A. and Lopatina, L.I., Kolloidn. Zh., 1998, vol. 60,no. 5, p. 698.

    Google Scholar 

  39. Kerker, M., J. Colloid Interface Sci., 1985, vol. 105,no. 2, p. 297.

    Google Scholar 

  40. Karpov, S.V., Popov, A.K., Slabko, V.V., and Shevnina, G.B., Kolloidn. Zh., 1995, vol. 57,no. 2, p. 199.

    Google Scholar 

  41. Karpov, S.V., Bas'ko, A.L., Koshelev, S.V., et al., Kolloidn. Zh., 1997, vol. 59,no. 6, p. 765.

    Google Scholar 

  42. Danilova, Yu.E. and Safonov, V.P., Fractal Reviews in the Natural and Applied Sciences, Novak, M.M., Ed., London: Chapman and Hall, 1995, p. 101.

    Google Scholar 

  43. Danilova, Yu.E., Rautian, S.G., and Safonov, V.P., Izv. Russ. Akad. Nauk, Ser. Fiz., 1996, vol. 60,no. 3, p. 56.

    Google Scholar 

  44. Meakin, P., Ann. Rev. Phys. Chem., 1988, vol. 39, p. 237.

    Google Scholar 

  45. Khlebtsov, N.G. and Mel'nikov, A.G., Kolloidn. Zh., 1998, vol. 60,no. 6, p. 843.

    Google Scholar 

  46. Born, M. and Wolf, E., Principles of Optics, Oxford: Pergamon, 1968, 4th ed. Translated under the title Osnovy optiki, Moscow: Nauka, 1973.

    Google Scholar 

  47. Goedecke, G.H. and O'Brien, S.G., Appl. Opt., 1988, vol. 27,no. 12, p. 2431.

    Google Scholar 

  48. Draine, B.T. and Goodman, J., Astrophys. J., 1993, vol. 405,no. 2, p. 685.

    Google Scholar 

  49. Danilova, Yu.E., Localization of Optical Excitation in Colloidal Aggregates of Silver, Cand. Sci. (Phys.-Math.) Dissertation, Novosibirsk: Inst. Automatics and Electrometry, Siberian Division, Russian Academy of Sciences, 1999.

    Google Scholar 

  50. McClain, W.M. and Ghoul, W.A., J. Chem. Phys., 1986, vol. 84,no. 12, p. 6609.

    Google Scholar 

  51. Singham, M.K., Singham, S.B., and Salzman, G.C., J. Chem. Phys., 1986, vol. 85,no. 7, p. 3807.

    Google Scholar 

  52. Quinten, M., Z. Phys. B: Condens. Matter, 1996, vol. 101, p. 211.

    Google Scholar 

  53. Gouesbet, G. and Grehan, G., J. Opt. (Paris), 1982, vol. 13, p. 97.

    Google Scholar 

  54. Gouesbet, G., Maheu, B., and Grehan, G., J. Opt. (Paris), 1985, vol. 16, p. 83.

    Google Scholar 

  55. Xu, Y.-L., J. Comput. Phys., 1998, vol. 139, p. 137.

    Google Scholar 

  56. Wilkinson, J.H. and Reinsch, C., Handbook for Automatic Computation. Linear Algebra, Berlin: Springer, 1974.

    Google Scholar 

  57. Flatau, P.J., Opt. Lett., 1997, vol. 22,no. 16, p. 1205.

    Google Scholar 

  58. Waterman, P.C., Phys. Rev. D, 1971, vol. 3,no. 4, p. 825.

    Google Scholar 

  59. Frens, G., Nature Phys. Sci., 1973, vol. 241,no. 105, p. 20.

    Google Scholar 

  60. Bogatyrev, V.A., Dykman, L.A., and Shchegolev, S.Yu, RF Patent 2 013 374, Byull. Izobret., 1994, no. 10, p. 1.

  61. Fabrikanos, A., Athanassiou, S., and Lieser, K.H., Z. Naturforsch., 1963, vol. 18, p. 612.

    Google Scholar 

  62. Khlebtsov, N.G., Appl. Opt., 1996, vol. 35,no. 21, p. 4261.

    Google Scholar 

  63. Lin, M.Y., Lindsay, H.M., Weitz, D.A., et al., Nature, 1989, vol. 339,no. 6223, p. 360.

    Google Scholar 

  64. Jullien, R., New J. Chem., 1990, vol. 14,no. 3, p. 239.

    Google Scholar 

  65. Xu, Y.-L., private communication.

  66. Mishchenko, M.I., Travis, L.D., and Mackowski, D.W., J. Quant. Spectrosc. Radiat. Transf., 1996, vol. 55,no. 5, p. 535.

    Google Scholar 

  67. Varshalovich, D.A., Moskalev, A.N., and Khersonskii, V.K., Quantum Theory of Angular Momentum, Singapore: World Scientific, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khlebtsov, N.G., Dykman, L.A., Krasnov, Y.M. et al. Light Absorption by the Clusters of Colloidal Gold and Silver Particles Formed During Slow and Fast Aggregation. Colloid Journal 62, 765–779 (2000). https://doi.org/10.1023/A:1026643111821

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026643111821

Keywords

Navigation