Skip to main content
Log in

Mechanism for Conversion of the Type of Conductivity in p-Hg1–xCdxTe Crystals upon Bombardment by Low-Energy Ions

  • Published:
Russian Physics Journal Aims and scope

Abstract

The main peculiarities of the pn conversion of the type of conductivity in narrow-band p-Hg1–x Cd x Te solid solutions containing vacancies of mercury upon bombardment by low-energy ions are explained based on the traditional notions about the chemical diffusion of mercury. These peculiarities are related, on the one hand, to the features of the defect formation in Hg0.8Cd0.2Te (containing a small amount of high-mobility interstitial mercury atoms with a great amount of low-mobility vacancies) and, on the other hand, to the high concentrations of intrinsic electrons and holes efficiently screening the electric field of the defect layer. The high conversion rate realized upon ion bombardment, as compared to the conversion rate taking place upon annealing in mercury vapors, is due to the fact that nonequilibrium interstitial mercury atoms are produced in abundance near the surface of the crystal subject to bombardment. This effect depends substantially on the electric field appearing near the outer boundary of the converted layer; therefore, as the Hg content, and, hence, the width of the forbidden band, is increased, one should expect a noticeable decrease in p-n conversion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. M. Wotherspoon, UK Patent No. GB 2095898 (1981).

  2. M. V. Blackman, D. E. Charlton, M. D. Jenner, et al., Electron. Lett., 23, 978 (1987).

    Google Scholar 

  3. V. I. Ivanov-Omskii, K. E. Mironov, K. D. Mynbaev, et al., in: Proc. XII All-Union Conf. On Physics of Semiconductors [in Russian], Kiev, 1990. Part 2, p. 205.

  4. V. I. Ivanov-Omskii, K. E. Mironov, K. D. Mynbaev, Fiz. Tekh. Polupr., 24, 2222 (1990).

    Google Scholar 

  5. G. Bahir and E. Finkman, J. Vac. Sci. Technol., A7, 348 (1989).

    Google Scholar 

  6. V. Savitsky, L. Mansurov, I. Fodchuk, et al., Proc SPIE, 3725, 299 (1999).

    Google Scholar 

  7. A. V. Dvurechenskii, V. G. Remesnik, I. A. Ryazantsev, and N. H. Talipov, Fiz. Tekh. Polupr., 27, 168 (1993).

    Google Scholar 

  8. J. Frank, E. Belas, R. Grill, et al., Proc. SPIE, 3182, 276 (1997).

    Google Scholar 

  9. I. M. Baker, M. P. Hastings, L. G. Hipwood, et al., III-V Review, 9, 50 (1996).

    Google Scholar 

  10. P. Rogowski, H. Mucha, and J. Piotrovski, Phys. Stat. Sol. (A), 114, K37 (1989).

    Google Scholar 

  11. S. Rolland, R. Grander, and R. Triboulet, J. Crys. Growth, 117, 208 (1992).

    Google Scholar 

  12. I. I. Izhnin, A. I. Izhnin, K. R. Kurbanov, and B. B. Prytuljak, Proc. SPIE, 3182, 383 (1997).

    Google Scholar 

  13. P. Sigmund, Phys. Rev., 184, 383 (1969).

    Google Scholar 

  14. M. S. Nikitin and K. P. Pavlov, in: Proc. All-Union Symp. on Narrow-Forbidden-Band Semiconductors and Semimetals [in Russian], Lvov, 1983, p. 136.

  15. K. R. Mendibaev, V. N. Vigdorovich, A. M. Sokolov, and E. Sadykov, Izv. AN SSSR, Neorg. Mater., 23, 344 (1987).

    Google Scholar 

  16. N. N. Berchenko, V. E. Krevs, and V. G. Sredin, Semiconductor Solid Solutions and Their Applications [in Russian], Voenizdat, Moscow (1982).

    Google Scholar 

  17. L. R. Holland and R. E. Taylor, J. Vac. Sci. Technol., A1, 1615 (1983).

    Google Scholar 

  18. F. A. Kröger, The Chemistry of Imperfect Crystals, North-Holland Pub. Co., Amsterdam; Interscience Publishers, NY (1964).

    Google Scholar 

  19. H. R. Vydyanath, J. Electr. Soc., Solid-State Sci. Technol., 128, 2609 (1981).

    Google Scholar 

  20. V. V. Bogoboyashchii, A. I. Elizarov, V. I. Ivanov-Omskii, et al., Fiz. Tekh. Polupr., 19, 819 (1985).

    Google Scholar 

  21. Atomic Diffusion in Semiconductors, ed. by D. Shaw, Plenum, London–NY (1973).

    Google Scholar 

  22. V. V. Bogoboyashchii, in: Problems of Creation of New Machines and Technologies, Trans. Kremenchug State Polytech. Inst., 1998, Issue 2, p. 209.

    Google Scholar 

  23. A. M. Kosevich, Physical Mechanics of Real Crystals [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  24. J. Hirth and J. Lothe, Theory of Dislocations, McGrow–Hill, NY (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogoboyashchii, V.V., Inzhin, I.I. Mechanism for Conversion of the Type of Conductivity in p-Hg1–xCdxTe Crystals upon Bombardment by Low-Energy Ions. Russian Physics Journal 43, 627–636 (2000). https://doi.org/10.1023/A:1026630818471

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026630818471

Keywords

Navigation