Skip to main content
Log in

Complexities and Their Applications to Characterization of Chaos

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The concept of complexity in InformationDynamics is discussed. The chaos degree defined by thecomplexities is applied to examine chaotic behavior oflogistic map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Accardi, L., Ohya, M., and Watanabe, N. (1996). Note on quantum dynamical entropy, Reports on Mathematical Physics, 38, 457-469.

    Google Scholar 

  • Benatti, F. (1993). Deterministic Chaos in Infinite Quantum Systems, Springer-Verlag, Berlin.

    Google Scholar 

  • Billingsley, P. (1965). Ergodic Theory and Information, Wiley, New York.

    Google Scholar 

  • Connes, A., and Størmer, E. (1975). Entropy for automorphisms of II1 von Neumann algebras, Acta Mathematica, 134, 289-306.

    Google Scholar 

  • Connes, A., Narnhofer, H., and Thirring, W. (1987). Dynamical entropy of C*-algebras and von Neumann algebras, Communications in Mathematical Physics, 112, 691-719.

    Google Scholar 

  • Emch, G. G. (1974). Positivity of the K-entropy on non-abelian K-flows, Zeitschrift für Wahrscheinlichkeits theorie Verwandte Gebiete, 29, 241-252.

    Google Scholar 

  • Holevo, A. S. (1973). Some estimates for the amount of information transmittable by a quantum communication channel, Problemy Peredachi Informacii, 9, 3-11 [in Russian].

    Google Scholar 

  • Ingarden, R. S. (1976). Quantum information theory, Reports on Mathematical Physics, 10, 43-73.

    Google Scholar 

  • Ingarden, R. S., Kossakowski, A., and Ohya, M. (1997). Information Dynamics and Open System, Kluwer Academic Publishers.

  • Levitin, L. B. (1991). Physical information theory for 30 years: basic concepts and results, in Springer Lecture Notes in Physics, Vol. 378, p. 101-110.

    Google Scholar 

  • Matsuoka, T., and Ohya, M. (1995). Fractal dimensions of states and its application to Ising model Reports on Mathematical Physics, 36, 365-379.

    Google Scholar 

  • Misiurewicz, M. (1981). Absolutely continuous measures for certain maps of interval, Publications Mathematiques IHES, 53, 17-51.

    Google Scholar 

  • Muraki, N., and Ohya, M. (1996). Entropy functionals of Kolmogorov Sinai type and their limit theorems, Letters in Mathematical Physics, 36, 327-335.

    Google Scholar 

  • Ohya, M. (1981). Quantum ergodic channels in operator algebras, Journal of Mathematical Analysis and Applications, 84, 318-327.

    Google Scholar 

  • Ohya, M. (1983a). On compound state and mutual information in quantum information theory, IEEE Transaction of Information Theory, 29, 770-774.

    Google Scholar 

  • Ohya, M. (1983b). Note on quantum probability, Lettere al Nuovo Cimento, 38, 402-406.

    Google Scholar 

  • Ohya, M. (1989). Some aspects of quantum information theory and their applications to irreversible processes, Reports on Mathematical Physics, 27, 19-47.

    Google Scholar 

  • Ohya, M. (1991a). Information dynamics and its application to optical communication processes, Springer Lecture Notes in Physics, Vol. 378, pp. 81-92.

    Google Scholar 

  • Ohya, M. (1991b). Fractal dimension of states, Quantum Probability and Related Topics, 6, 359-369.

    Google Scholar 

  • Ohya, M. (1995). State change, complexity and fractal in quantum systems, Quantum Communications and Measurement, 2, 309-320.

    Google Scholar 

  • Ohya, M. (n.d.-a). Foundation of entropy, complexity and fractal in quantum systems, in International Congress of Probability toward 2000, to appear.

  • Ohya, M. (n.d.-b). Fundamentals of quantum mutual entropy and capacity, submitted.

  • Ohya, M. (n.d.-c). Applications of information dynamics to genome sequences, SUT preprint.

  • Ohya, M. (1997). Complexity and fractal dimensions for quantum states, Open Systems and Information Dynamics, 4, 141-157.

    Google Scholar 

  • Ohya, M., and Petz, D. (1993). Quantum Entropy and Its Use, Springer-Verlag, Berlin.

    Google Scholar 

  • Ohya M., and Watanabe N. (1993). Information dynamics and its application to Gaussian communication process, Maximum Entropy and Bayesian Method, 12, 195-203.

    Google Scholar 

  • Ohya, M., Petz, D., and Watanabe, N. (1997). On capacities of quantum channels, Probability and Mathematical Statistics, 17, 179-196.

    Google Scholar 

  • Shannon, C. E. (1948). Mathematical theory of communication, Bell System Technical Journal, 27, 379-423.

    Google Scholar 

  • Shaw, R. (1981). Strange attractors, chaotic behavior and information flow, Zeitschrift für Naturforschung, 36a, 80-112.

    Google Scholar 

  • Uhlmann, A. (1977). Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in interpolation theory, Communication in Mathematical Physics, 54, 21-32.

    Google Scholar 

  • Umegaki, H. (1962). Conditional expectations in an operator algebra IV (entropy and information), Kodai Mathematical Seminar Reports, 14, 59-85.

    Google Scholar 

  • Von Neumann, J. (1932). Mathematischen Grundlagen Quantenmechanik, Springer, Berlin.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohya, M. Complexities and Their Applications to Characterization of Chaos. International Journal of Theoretical Physics 37, 495–505 (1998). https://doi.org/10.1023/A:1026620313483

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026620313483

Keywords

Navigation