Skip to main content
Log in

Bioceramics ― Yesterday, Today, Tomorrow

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

Developments and applications of bioceramics are reviewed. Used initially as alternatives to metallic materials in order to increase the biocompatibility of implants, bioceramics have become a diverse class of biomaterials presently including three basic types: bioinert high-strength ceramics; bioactive ceramics which form direct chemical bonds with bone or even with the soft tissue of a living organism; various bioresorbable ceramics which are actively included in the metabolic processes of an organism with predictable results. Certain members of the different types of bioceramics are the most bioinert and biocompatible of all known biomaterials. A review of the composition, physicochemical properties, and biological behavior of the principal types of bioceramic materials is given, based on the literature and some of our own data. The materials include, in addition to classical sintered ceramics, bioglass-ceramics and bioglasses which are similar in composition, properties, and applications. Special attention is given to structure as the main physical parameter determining not only the properties of the ceramic materials, but also their reaction with the biomedium. The present status of research and development in bioceramics is characterized as a first step in the solution of complex problems at the confluence of materials science, biology, and medicine by the synthesis of “smart materials.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. L. Hench, “Bioceramics,” Amer. Ceram. Soc, 81, No. 7, 1705-1727 (1998).

    Google Scholar 

  2. S. F. Hulbert, J. C. Bokros, L. L. Hench, et al., “Ceramics in clinical applications: past, present and future,” in: High Tech Ceramics, P. Vincenzini (ed.), Elsevier, Amsterdam (1987), pp. 189-213.

    Google Scholar 

  3. L. L. Hench and J. Wilson, An Introduction to Ceramics, World Scientific, London (1993).

    Google Scholar 

  4. P. Christel, A. Meunier, et al., “Biomechanical compatibility and design of ceramic implants for orthopaedic surgery in bioceramics,” in: Material Characteristics Versus in vivo Behavior, P. Ducheyne and J. Lemons (eds.), Annals of New York Academy of Science (1988), 523.

  5. L. L. Hench, R. J. Splinter, et al., “Bonding mechanisms at the interface of ceramic prosthetic materials,” J. Biomed. Mater. Res., 2, No. 1, 117-141 (1971).

    Google Scholar 

  6. M. T. M. Manley, “Calcium phosphate biomaterials,” in: Hydroxyapatite Coatings in Orthopedic Surgery: Review of the Literature, R. G. T. Geesink and M. T. Manley (eds.), Raven Press Ltd., N.Y. (1993), pp. 1-23.

    Google Scholar 

  7. M. I. Kabanova, V. A. Dybok, and V. V. Skorokhod, “Phase changes in powders based on zirconium dioxide when dissolved in fluoric acid,” Dokl. Akad. Nauk. USSR, Ser. B, No. 6, 39-43 (1989).

    Google Scholar 

  8. J. Black, “Ceramics and Composites,” in: Orthopedic Biomaterials in Research and Practice, Churchill Livingston, Inc., N.Y. (1988), pp. 191-211.

    Google Scholar 

  9. J. P. Werner, C. Lathe, et al., “Pore-graded hydroxyapatite materials for implantation,” in: British Ceramic Proceedings, The Sixth Conference and Exhibition of the European Ceramic Society, 2, No. 60 (1999), pp. 509-510.

    Google Scholar 

  10. A. A. Korzh, G. Kh. Gruntovskii, and S. V. Malyshkina, “Our experience and perspective on the use of ceramic materials for bone plastic,” Ortopediya, Travmatologiya, Protezirovaniya, No. 3, 35-37 (1887).

    Google Scholar 

  11. M. Jarcho, “Calcium phosphate ceramics as hard tissue prosthetics,” Clinical Orthopedics and Related Research, June, 1981, pp. 259-278.

  12. L. L. Hench and J. K. West, “Biological application of bioactive glasses,” Life Chem. Rep., 13, 187-241 (1996).

    Google Scholar 

  13. S. D. Cook, K. A. Thomas, J. F. Kay, and M. Jarcho, “Hydroxyapatite-coated porous titanium for use in orthopedic implant applications,” Clinical Orthopedics and Related Research, May, 1998, pp. 303-312.

  14. B. M. Tracy, S. D. Cook, J. F. Kay, et al., “Direct electron microscope studies of the bone-HA interface,” J. Biomed. Mater. Res., 18, 719-726 (1984).

    Google Scholar 

  15. C. A. Van Blitterswijk, J. J. Grote, W. Kuypers, et al., “Bioreactions at the tissue-hydroxyapatite interface,” Biomaterials, 6, July, 243-251 (1985).

    Google Scholar 

  16. H. P. Drobeck, S. S. Rothstein, K. I. Gumaer, et al., “Histological observations of soft tissue responses to implanted multifaceted particles and disks of HA,” J. Oral Maxillofacial Surgery, 42, 143-149 (1984).

    Google Scholar 

  17. M. Ogiso, H. Kuneda, et al., “TEM analysis of hydroxyapatite interfacial reactions,” J. Dent. Res., 1, 419-424 (1981).

    Google Scholar 

  18. T. Kokubo, “Surface chemistry of bioactive glass-ceramics,” J. Non-Cryst. Solids, 120, 138-151 (1990).

    Google Scholar 

  19. U. Gross, R. Kimme, et al., “The response of bone to surface active glass/glass-ceramics,” CRC Crit. Rev. Biocompat., 4, 2 (1988).

    Google Scholar 

  20. U. Gross and V. Strunz, “The interface of various glasses and glass3/4ceramics with a bone implantation bed,” J. Biomed. Mater. Res., 19, 251 (1985).

    Google Scholar 

  21. U. Gross, J. Brandes, et al., “The ultrastructure of the interface between a glass-ceramics and bone,” J. Biomed. Mater. Res., 15, 291 (1981).

    Google Scholar 

  22. T. Yamamuto, L. L. Hench, and J. Wilson (eds.), Bioactive Glasses and Glass-Ceramics: Handbook on Bioactive Ceramics, Vol. 1, CRC Press, Boca Raton, Florida (1990).

    Google Scholar 

  23. T. Yamamuto, L. L. Hench, and J. Wilson (eds.), Calcium Phosphate and Hydroxyapatite Ceramics: Handbook on Bioactive Ceramics, Vol. 2, CRC Press, Boca Raton, Florida (1990).

    Google Scholar 

  24. J. Huang, L. DiSilvo, et al., “In vivo mechanical and biological assessment of hydroxyapatite reinforced polyethylene composite,” J. Mater. Sci. Mater. Med., 8, 775-779 (1997).

    Google Scholar 

  25. M. T. M. Manley, “Calcium phosphate biomaterials: review of the literature,” in: Hydroxyapatite Coatings in Orthopedic Surgery, R. G. T. Geesink and M. T. Manley (eds.), Raven Press Ltd., N. Y. (1993), pp. 1-23.

    Google Scholar 

  26. TU 46.15.246-97. “Animal bone meal feed,” Publ. 1997.

  27. A. Ravaglioli, A. Krajewski, M. Dandy, et al., “Chemical properties of various hydroxyapatite powders and industrial production,” Int. Ceram., 2, 80-85 (1994).

    Google Scholar 

  28. R. Z. LeGerous and J. P. LeGerous, “Calcium phosphate biomaterials: preparation, properties, and biodegradation,” in: Encyclopedic Handbook of Biomaterials and Bioengineering, Part A, Vol. 2 (1995), pp. 1429-1463.

    Google Scholar 

  29. S. D. Cook, K. A. Thomas, J. F. Kay, and M. Jarcho, “Hydroxyapatite-coated porous titanium for use in orthopedic implant applications,” Clinical Orthopedics and Related Research, May, 1998, pp. 313-312.

  30. S. S. Rothstein, D. Paris, et al., “Use of durapatite for the rehabilitation of resorbed alveolar ridges,” J. Amer. Dental Association, 109, October, 571-574 (1984).

    Google Scholar 

  31. J. Wilson and S. B. Low, “Bioactive ceramics for periodontal treatment: comparative studies in the patus monkey,” J. Appl. Biomaterials, 3, 123-169 (1984).

    Google Scholar 

  32. G. Daculsi, R. Z. LeGeros, et al., “Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterisation,” J. Biomed. Mater. Res., 23, 883-894 (1989).

    Google Scholar 

  33. H. P. Drobeck, S. S. Rothstein, K. I. Gumaer, et al., “Histological observation of soft tissue responses to implanted, multifaceted particles and discs of HA,” J. Oral Maxillofacial Surgery, 42, 143-149 (1984).

    Google Scholar 

  34. P. S. Eggli, W. Muller, and R. K. Schenk, “Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histological study of bone ingrowth and implant substitution,” Clinical Orthopedics and Related Research, July, 1988, pp. 127-138.

  35. C. P. A. T. Klein, A. A. Driessen, K. deGroot, and A. Van den Hooff, “Biodegradation behavior of various calcium phosphate materials in bone tissue,” J. Biomed. Mater. Research, 17, 769-784 (1983).

    Google Scholar 

  36. R. Bell and O. R. Beirne, “Effect of HA, tricalcium phosphate, and collagen on the healing of defects in the rat mandible,” J. Oral Maxillofacial Surgery, 46, 589-594 (1988).

    Google Scholar 

  37. C. A. Van Blitterswijk, J. J. Grote, W. Kuypers, et al., “Bioreaction at the tissue/hydroxyapatite interface,” Biomaterials, 6, July, 243-251 (1985).

    Google Scholar 

  38. H. P. Drobeck, S. S. Rothstein, K. I. Gumaer, et al., “Histological observation of soft tissue responses to inplanted multifaceted particles and discs of HA,” J. Oral Maxillofacial Surgery, 42, 143-149 (1984).

    Google Scholar 

  39. H. A. Hoogendoorn, W. Renooij, L. M. A. Akkermans, et al., “Long-term study of large ceramic implants (porous hydroxyapatite) in dog femora,” Clinical Orthopedics and Related Research, July/August, 281-288 (1984).

  40. K. I. Gumaer, A. D. Sherer, R. G. Slighter, et al., “Tissue response in dogs to dense HA implantation in the femur,” J. Oral Maxillofacial Surgery, 44, 618-627 (1986).

    Google Scholar 

  41. S. D. Cook, M. C. Reynolds, et al., “Evaluation of HA graft materials in canine cervical spine fusions,” Spine, 11, No. 4, 305-309 (1986).

    Google Scholar 

  42. P. A. Dieppe, E. C. Huskisson, et al., “Apatite deposition disease. A new arthropathy,” Lancet, 7954, February 7, 266-269 (1976).

    Google Scholar 

  43. M. Nagase, D. G. Baker, and H. R. Schumacher, “Prolonged inflammatory reactions induced by artificial ceramics in the rat pouch model,” J. Rheumatology, 15, No. 9, 1334-1338 (1988).

    Google Scholar 

  44. P. E. Cullum, D. E. Frost, et al., “Evaluation of HA particles in the repair of alveolar clefts in dogs,” J. Oral Maxillofacial Surgery, 46, 190-196 (1988).

    Google Scholar 

  45. T. Rooney, S. Berman, A. T. Indersano, “Evaluation of porous block HA for augmentation of alveolar ridges,” J. Oral Maxillofacial Surgery, 46, 15-18 (1988).

    Google Scholar 

  46. J. W. Framme, P. G. J. Rout, et al., “Ridge augmentation using solid and porous hydroxyapatite with and without autogenous bone or plaster,” J. Oral Maxillofacial Surgery, 45, 771-777 (1987).

    Google Scholar 

  47. H. V. Dennissen, H. J. A. Van Dijk, K. DeGroot, et al., “Biological and mechanical evaluation of dense calcium hydroxyapatite made by continuous hot pressing,” in: Mechanical Properties of Biomaterials, G. W. Hastings and F. Williams (eds.), J. Wiley & Sons, N.Y. (1980), pp. 489-505.

    Google Scholar 

  48. C. P. A. T. Klein, A. A. Driessen, K. DeGroot, and A. Van den Hoff, “Biodegradation behavior of various calcium phosphate materials in bone tissue,” J. Biomed. Mater. Res., 17, 769-784 (1983).

    Google Scholar 

  49. C. A. Van Blitterswijk, J. J. Grote, et al., “The biological performance of calcium phosphate ceramics in an infected implantation site. II. Biological evaluation of hydroxyapatite during short term infection,” J. Biomed. Mater. Res., 20, 1003-1015 (1986).

    Google Scholar 

  50. K. DeGroot, Bioceramics of Calcium Phosphate, CRC Press, Boca Raton, Florida (1983).

    Google Scholar 

  51. R. E. Holmes, R. W. Wardrop, et al., “HA as a bone graft substitute in orthognatic surgery: histological and histometric findings,” J. Oral Maxillofacial Surgery, 46, 661-671 (1988).

    Google Scholar 

  52. S. S. Rothstein, D. Paris, et al., “Use of durapatite for the rehabilitation of resorbed alveolar ridges,” J. Amer. Dental Association, 109, October, 571-574 (1984).

    Google Scholar 

  53. J. N. Kent, J. H. Quinn, et al., “Correction of alveolar ridge deficiencies with non-resorbable HA,” J. Amer. Dental Association, 105, December, 993-1001 (1982).

    Google Scholar 

  54. J. N. Kent, J. H. Quinn, et al., J. Oral Maxillofacial Surgery, 41, 829-642 (1983).

    Google Scholar 

  55. M. S. Block and J. N. Kent, “Long-term radiographic evaluation of HA-augmented mandibular alveolar ridges,” J. Oral Maxillofacial Surgery, 42, 793-796 (1984).

    Google Scholar 

  56. A. N. Cranin and N. M. Satler, “Human mandibularalveolar ridge augmentation with HA: final report of a five-year investigation,” in: 10th Annual Meeting of the Society for Biomaterials (Washington, April 27-May 4, 1984), p. 324.

  57. J. W. Frame, “Hydroxyapatite as a biomaterial for alveolar ridge augmentation,” Int. J. Oral Maxillofacial Surgery, 16, 642-655 (1987).

    Google Scholar 

  58. F. M. Zide, J. N. Kent, et al., “HA cranioplasty directly over dura,” J. Oral Maxillofacial Surgery, 45, 481-486 (1987).

    Google Scholar 

  59. V. A. Dubok, E. O. Zhurakivskii, L. A. Ivanchenko, et al., “On defects in the crystal structure of hydroxyapatite microcrystals,” Metallofizika i Noveishie Tekhnologii, 19, 31-37 (1997).

    Google Scholar 

  60. V. A. Dubok, L. A. Ivanchenko, and N. V. Ul'yanchich, “Synthesis and properties of non-stoichiometric hydroxyapatite,” Metallofizika i Noveishie Tekhnologii, 19, No. 3, 102-106 (1997).

    Google Scholar 

  61. V. A. Dubok and N. V. Ul'yanchich, “Synthesis, properties, and application of osteotropic substitutes for bone tissue based on hydroxyapatite ceramics,” Ortopediya, Travmatologiya i Protezirovanie, No. 3, 26-30 (1998).

    Google Scholar 

  62. V. A. Dubok, N. V. Ul'yanchich, B. A. Tolstopyatov, and V. V. Protsenko, “Control of the properties of synthetic hydroxyapatite ceramics for various implants in orthopedia and traumatology,” in: Problems, Accomplishments and Future Developments in Medico-Biological Sciences and Public Health Care [in Russian], Tr. Krym. Gos. Med. Unta, 135, Ch. 2, 129-132 (1999).

    Google Scholar 

  63. T. W. Bauer, R. G. T. Geesink, et al., “Hydroxyapatite-coated femoral stems. Histological analysis of component retrieved at autopsy,” J. Bone Joint Surgery, 73A, No. 10, 1439-1452 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubok, V.A. Bioceramics ― Yesterday, Today, Tomorrow. Powder Metallurgy and Metal Ceramics 39, 381–394 (2000). https://doi.org/10.1023/A:1026617607548

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026617607548

Navigation