Skip to main content
Log in

Construction of Exact Invariants for Time Dependent Classical Dynamical Systems

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In the present work, we survey various methodsused for the construction of exact invariants fordynamical systems involving an explicit time dependence.More stress is placed on two-dimensional (2D) than one-dimensional (1D) systems. While bothharmonic and anharmonic time-dependent (TD) systems arediscussed in the 1D case, the construction of invariantsis carried out for several interesting central and noncentral systems in 2D. The method ofcomplexification of two space dimensions is described indetail. The TD coupled oscillator problem, which in analternative form suggests the generalization of Ermakov systems, is analyzed in greater detail. Theavailable methods in the 2D case provide only the firstinvariant, and that for a few TD systems. These methodsas such are still inadequate as far as the construction of the second invariant is concerned. The roleand scope of some of the derived invariants in thecontext of various physical problems are highlighted.The possibility of extension of some of these methods to 3D TD systems is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. T. Whittaker, Analytical Dynamics (University of Cambridge Press, Cambridge, 1927).

    Google Scholar 

  2. J. Hietarinta, Phys. Rep. 147 (1987) 87–154.

    Google Scholar 

  3. C. R. Holt, J. Math. Phys. 23 (1982) 1037.

    Google Scholar 

  4. L. S. Hall, Physica 8D (1983) 90.

  5. M. Lakshmanan and R. Sahadevan, Phys. Rep. 224 (1993) 1.

    Google Scholar 

  6. P. A. M. Dirac, Proc. R. Soc. A 246 (1958) 326.

    Google Scholar 

  7. H. R. Lewis and P. G. L. Leach, Ann. Phys. 164 (1985) 47; J. Goedert and H. R. Lewis, J. Math. Phys. 28 (1987) 728, 736.

    Google Scholar 

  8. N. N. Bogoliubov and Y. A. Mitropolski, Asymptotic Methods in the Theory of Nonlinear Oscillations (Gordon and Breach, New York, 1961); M. D. Kruskal, J. Math. Phys. 3 (1962) 806.

    Google Scholar 

  9. V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978).

    Google Scholar 

  10. R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd ed. (Benjamin/Cummings, Reading, Massachusetts, 1982).

    Google Scholar 

  11. S. Chandrasekhar, Principles of Stellar Dynamics (Dover, New York, 1942), Chapter 3.

    Google Scholar 

  12. K. J. Whiteman, Rep. Prog. Phys. 40 (1977) 1033.

    Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Mechanics, 3rd ed. (Pergamon, Oxford, 1976); H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, Massachusetts, 1980).

    Google Scholar 

  14. K. Nakamura, Quantum Chaos: A New Paradigm of Nonlinear Dynamics (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  15. P. Helander, M. Lisak, and V. E. Semenov, Phys. Rev. Lett. 68 (1992) 3659, and references therein.

    Google Scholar 

  16. M. Kolsrud, Phys. Rev. 104 (1956) 1186.

    Google Scholar 

  17. M. Kruskal, J. Math. Phys. 3 (1962) 806.

    Google Scholar 

  18. H. R. Lewis, Jr., J. Math Phys. 9 (1968) 1976; see also H. R. Lewis, Jr., Phys. Rev. Lett. 13 (1967) 510, 636.

    Google Scholar 

  19. H. R. Lewis and W. B. Riesenfeld, J. Math. Phys. 10 (1969) 1458; S. S. Mizrahi, Phys. Lett. A 138 (1989) 465; S. Salmistraro and R. Rosso, J. Math. Phys. 34 (1993) 3964.

    Google Scholar 

  20. M. S. Abdalla and R. K. Colegrave, Phys. Rev. 32A (1985) 1958; R. K. Colgrave and M. A. Mannan, J. Math. Phys. 29 (1988) 1580.

    Google Scholar 

  21. R. S. Kaushal and H. J. Korsch, J. Math. Phys. 22 (1981) 1904.

    Google Scholar 

  22. P. G. L. Leach, SIAM J. Appl. Math. 34 (1978) 496.

    Google Scholar 

  23. J. R. Ray and J. L. Reid, Phys. Rev. A 26 (1982) 1042.

    Google Scholar 

  24. P. G. L. Leach, J. Math. Phys. 22 (1981) 465; 20 (1979) 96; A. Maharatna, R. Dutt, and D. Chatterji, J. Math. Phys. 20, (1979) 2221.

    Google Scholar 

  25. P. G. L. Leach and S. D. Maharaj, J. Math. Phys. 33 (1992) 2023.

    Google Scholar 

  26. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover, New York, 1939), Chapters 3, 4.

    Google Scholar 

  27. P. G. L. Leach, J. Math. Phys. 26 (1985) 2510; W. Sarlet and L. Y. Bahar, Int. J. Nonlin. Mech. 15 (1980) 133.

    Google Scholar 

  28. J. R. Ray and J. L. Reid, J. Math Phys. 20 (1979) 2054.

    Google Scholar 

  29. R. S. Kaushal, PramanaJ. Phys. 24 (1985) 663.

    Google Scholar 

  30. V. P. Ermakov, Univ. Izv. Kiev. Ser. III 9 (1880) 1.

    Google Scholar 

  31. J. R. Ray and J. L. Reid, Phys. Lett. A 71 (1979) 317; 74 (1979) 23.

    Google Scholar 

  32. J. L. Reid and J. R. Ray, J. Math. Phys. 23 (1982) 503; J. Phys. A 15 (1982) 2751.

    Google Scholar 

  33. H. J. Korsch, Phys. Lett. A 74 (1979) 294.

    Google Scholar 

  34. K. Takayama, Phys. Lett. A 88 (1982) 57.

    Google Scholar 

  35. M. Lutzky, Phys. Lett. A 68 (1978) 3; J. Phys. A 11 (1978) 249.

    Google Scholar 

  36. J. R. Ray, Phys. Rev. A 26 (1982) 729.

    Google Scholar 

  37. J. R. Burgan et al., Phys. Lett. A 74 (1979) 11.

    Google Scholar 

  38. M. R. Feix, S. Bouquet, and H. R. Lewis, Physica 28D (1987) 80.

    Google Scholar 

  39. H. R. Lewis and P. G. L. Leach, J. Math. Phys. 23 (1982) 2371.

    Google Scholar 

  40. B. Grammaticos and B. Dorizzi, J. Math. Phys. 25 (1984) 2194.

    Google Scholar 

  41. R. S. Kaushal, D. Parashar, and S. C. Mishra. Fortschr. Phys. 42 (1994) 689.

    Google Scholar 

  42. R. S. Kaushal, S. C. Mishra, and K. C. Tripathy, Phys. Lett. A 102 (1984) 7.

    Google Scholar 

  43. S. C. Mishra, R. S. Kaushal, and K. C. Tripathy, J. Math. Phys. 25 (1984) 2217.

    Google Scholar 

  44. S. C. Mishra. Some studies on two-dimension al classical integrable systems, Ph.D. thesis, Delhi University (1985); R. S. Kaushal, S. C. Mishra, and K. C. Tripathy, J. Math. Phys. 26 (dy1985) 420.

  45. R. S. Kaushal and S. C. Mishra. Pramana—J. Phys. 26 (1986) 109.

    Google Scholar 

  46. G. H. Katzin and J. Levine, J. Math. Phys. 24 (1983) 1761.

    Google Scholar 

  47. G. H. Katzin and J. Levine, J. Math. Phys. 18 (1977) 1267; 23 (1982) 552.

    Google Scholar 

  48. R. S. Kaushal and S. C. Mishra, J. Math. Phys. 34 (1993) 5843; R. S. Kaushal, D. Parashar, Shalini Gupta, and S. C. Misra, Ann. Phys. (NY) 259 (1997) 233.

    Google Scholar 

  49. A. Ramani, B. Dorzzi, and B. Grammaticos, Phys. Rev. Lett. 49 (1982) 1539.

    Google Scholar 

  50. R. S. Kaushal, Third order invariants for time dependent two-dimensiona l classical dynamical systems, (unpublished).

  51. P. G. L. Leach, Phys. Lett. A 158 (1991) 102.

    Google Scholar 

  52. C. Athorne, Phys. Lett. A 159 (1991) 375.

    Google Scholar 

  53. K. S. Givinder and P. G. L. Leach, Phys. Lett. A 186 (1994) 391; J. Phys. A 27 (1994) 4153.

    Google Scholar 

  54. E. Pinney, Proc. Am. Math. Soc. 1 (1950) 681.

    Google Scholar 

  55. C. Athorne, J. Phys. A 24 (1991) 945.

    Google Scholar 

  56. K. S. Govinder, C. Athorne, and P. G. L. Leach, J. Phys. A 26 (1993) 4035.

    Google Scholar 

  57. J. M. Cervero and J. D. Lejarreta, Phys. Lett. A 156 (1991) 201.

    Google Scholar 

  58. R. S. Kaushal, Pramana—J. Phys. 42 (1994) 467.

    Google Scholar 

  59. A. A. Makarov, J. A. Simorodinsky, Kh. Valiev, and P. Winternitz, Nuovo Cimento A 52 (1967) 1061.

    Google Scholar 

  60. R. S. Kaushal, S. C. Mishra, and K. C. Tripathy, J. Math. Phys. 26 (1985) 420.

    Google Scholar 

  61. C. J. Eliezer and A. Gray, SIAM J. Appl. Math. 30 (1976) 463.

    Google Scholar 

  62. H. J. Korsch and H. Laurent, J. Phys. B 14 (1981) 4213.

    Google Scholar 

  63. H. J. Korsch, H. Laurent, and R. Mohlenkamp, J. Phys. B 15 (1982) 1.

    Google Scholar 

  64. R. A. Lee, J. Phys. A 17 (1984) 535.

    Google Scholar 

  65. W. E. Milne, Phys. Rev. 35 (1930) 863.

    Google Scholar 

  66. R. S. Kaushal and D. Parashar, Quantum mechanics and supersymmetric quantum mechanics as the multidimensional Ermakov theories, In Proceedings XI DAE HEP Symposium, —Santiniketan (India) Dec. 28, 1994-Jan. 2, 1995; J. Phys. A29 (1996) 889.

  67. D. C. Khandekar and S. V. Lawande, Phys. Lett. 67A (1978) 175; J. Math Phys. 16 (1975) 384; 20 (1979) 1870; S. V. Lawande and A. K. Dhara, Phys. Lett. 99A (1983) 353.

    Google Scholar 

  68. D. C. Khandekar and S. V. Lawande, Phys. Rep. 137 (1986) 115, and references therein.

    Google Scholar 

  69. A. K. Dhara and S. V. Lawande, J. Phys. A 17 (1984) 2423.

    Google Scholar 

  70. D. C. Khandekar and S. V. Lawande, J. Phys. A 5 (1972) 812.

    Google Scholar 

  71. B. K. Berger, Phys. Rev. D 18 (1978) 4367.

    Google Scholar 

  72. C. W. Misner, Phys. Rev. D 8 (1973) 3271.

    Google Scholar 

  73. J. R. Ray, Phys. Rev. D 20 (1979) 2632.

    Google Scholar 

  74. J. Martin and S. Bouquet, J. Math Phys. 35 (1994) 181.

    Google Scholar 

  75. H. J. Giacomini, J. Phys. A 23 (1990) 587, 865.

    Google Scholar 

  76. J. L. Reid, Proc. Am. Math. Soc. 38 (1973) 532.

    Google Scholar 

  77. J. M. Thomas, Proc. Am. Math. Soc. 7 (1956) 95.

    Google Scholar 

  78. P. B. Burt and J. L. Reid, J. Math. Anal. Appl. 55 (1976) 43.

    Google Scholar 

  79. A. L. Hodgkin and A. F. Huxley, J. Physiol. 116 (1952) 449; 117 (1952) 500; R. Fitz Hugh, Biophys. J. 1 (1961) 445; for earlier work see, for example, A. C. Scott, Rev. Mod. Phys. 47 (1975) 505.

    Google Scholar 

  80. J. L. Hindmarsh and R. M. Rose, Nature 296 (1982) 162.

    Google Scholar 

  81. M. Lakshmanan and K. Rajagopal, Phys. Lett. A 82 (1981) 266.

    Google Scholar 

  82. K. Rajagopal, Phys. Lett. A 98 (1983) 77; 99 (1983) 261; 100 (1984) 49; 105 (1984) 160; 108 (1985) 228.

    Google Scholar 

  83. H. R. Lewis, Representation of magnetic fields with toroidal topology in terms of fieldline invariants. Report LA-UR–88-2607-Revised, Los Alamos National Laboratory; in Proceedings International Conference, on Plasma Physics, Delhi (India), 1989, paper H-19.

  84. H. R. Lewis and B. Abraham-Shrauner, Bull. Am. Phys. Soc. 34 (1989) 1974.

    Google Scholar 

  85. A. H. Boozer, Phys. Fluids 26 (1983) 1288.

    Google Scholar 

  86. G. K. Savvidy, Phys. Lett. B 130 (1983) 303; G. K. Savvidy, Nucl. Phys. B 246 (1984) 302; S. J. Chang, Phys. Rev. D 29 (1984) 259.

    Google Scholar 

  87. J. Villarroel, J. Math. Phys. 29 (1988) 2132.

    Google Scholar 

  88. C. Nagraj Kumar and A. Khare, Preprint, Institute of Physics, Bhubneswar (1987).

  89. S. Ichtiaroglou, J. Phys. A 20 (1987) 5079; M. Lakashmanan and R. Sahadevan, J. Math. Phys. 32 (1991) 75.

    Google Scholar 

  90. A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebraes, Vol. 1 (Birkhauser, Basel, 1990).

    Google Scholar 

  91. R. K. Colegrave, P. Croxson, and M. A. Mannan, Phys. Lett. A 131 (1988) 407.

    Google Scholar 

  92. H. R. Lewis and P. G. L. Leach, J. Math. Phys. 23 (1982) 165.

    Google Scholar 

  93. R. S. Kaushal, Classical and Quantum Mechanics of Noncentral Potentials: A Survey of Two Dimensional Systems, Narosa (New Delhi)/Springer (Heidelberg), (1998) Chapters 3 and 7.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaushal, R.S. Construction of Exact Invariants for Time Dependent Classical Dynamical Systems. International Journal of Theoretical Physics 37, 1793–1856 (1998). https://doi.org/10.1023/A:1026605011434

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026605011434

Keywords

Navigation