Skip to main content
Log in

Study of cerium species in molten Li2CO3–Na2CO3 in the conditions used in molten carbonate fuel cells. Part I: Thermodynamic, chemical and surface properties

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The chemical and surface behaviour of cerium oxide, a candidate material for MCFC applications is analysed in Li2CO3–Na2CO3 carbonate eutectic in reducing (H2:CO2:H2O:CO) and oxidizing (O2:CO2) atmospheres. The electrochemical stability domains of cerium species are established at different temperature on the basis of thermochemical calculations. CeO2 is the stable species whatever the acidity level in both the anode and cathode conditions; nevertheless, a partial solubility of Ce2O3 in CeO2 can be predicted. The solubility of cerium and cerium oxide samples, determined by absorption spectrophotometry, is about 5 × 10−4 mol kg−1 in cathodic conditions and 3 × 10−4 mol kg−1 in anodic conditions. X-ray diffraction (XRD) confirmed the presence of CeO2 at the surface of the samples. Incorporation of sodium species in the CeO2 lattice is likely; the presence of Ce(III) in long endurance tests was detected by X-ray photoelectron spectroscopy (XPS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Yuh, R. Johnsen, M. Farooque and H. Maru, J. Power Sources 56 (1995) 1.

    Google Scholar 

  2. V. Chauvaut, PhD thesis, University of Paris VI (ENSCP), France (1998).

  3. M. Keijzer, K. Hemmes, P.J.J.M. van der Put, J.H.W. De Wit and J. Schooman, Corros. Sci. 39 (1997) 483.

    Google Scholar 

  4. K. Myles, M. Krumpelt, G. Kucera, M. Roche and E. Indacochea, Proceedings of the Joint Contractors Meeting: Conference on 'Advanced Turbine Systems, Fuel Cells and Coal-Fired Heat Engines' Morgantown, WV, USA, 3-5 Aug. (1993), p. 386.

  5. E. Dincer-Cubukcu and M.R. DeGuire, Mater. Lett. 10 (1991) 379.

    Google Scholar 

  6. A. Prohasha, B. Rohland, M. Bischoff and V. Plzak, WO 98/53513 Int. Patent (1998).

  7. J.R. Sims and R.N. Blumenthal, High Temp. Sci. 8 (1976) 99.

    Google Scholar 

  8. H.L. Tuller and A.S. Nowick, J. Electrochem. Soc. 126 (1979) 209.

    Google Scholar 

  9. P. Pascal, 'Nouveau Traité de Chimie minérale', Tome VII (Masson & Cie, Paris 1963).

    Google Scholar 

  10. G. Aguilar, L. Dupont, A. Foissy, J.P. Larpin and J.C. Colson, 'La Revue de Métallurgie-CIT/Science et Génie des Matériaux' (1993), p. 1607.

  11. U. Lavrencic Stangar, B. Orel, I. Grabec, B. Ogorevec and K. Kalcher, Solar Energy Mater. Sol. Cells 316 (1993) 171.

    Google Scholar 

  12. F. Czerwinski, G.I. Sproule, M.J. Graham and W.W. Smeltzer, Corros. Sci. 37 (1995) 541.

    Google Scholar 

  13. C. Tanner, J.F. Jue and A.V. Virkar, J. Electrochem. Soc. 140 (1993) 1073.

    Google Scholar 

  14. C. Tanner and A.V. Virkar, J. Am. Ceram. Soc. 77 (1994) 2209.

    Google Scholar 

  15. S. Roure, F. Czerwinski and A. Petric, Oxid. Met. (USA) 42 (1994) 75.

    Google Scholar 

  16. M.F. Stroosnijder, V. Guttmann, T. Fransen and J.H.W. de Wit, Oxid. Met. (USA) 33 (1990) 371.

    Google Scholar 

  17. M. Cassir, V. Chauvaut, A. Alfarra and V. Albin,J. Appl. Electrochem. (2000) in press.

  18. G. Moutiers, M. Cassir and J. Devynck, J. Electroanal. Chem. 324 (1992) 175.

    Google Scholar 

  19. M. Cassir, G. Moutiers and J. Devynck, J. Electrochem. Soc. 140 (1993) 3114.

    Google Scholar 

  20. B. Malinowska, M. Cassir, F. Delcorso and J. Devynck, J. Electroanal. Chem. 389 (1995) 21.

    Google Scholar 

  21. M. Cassir, M. Olivry, V. Albin, B. Malinowska and J. Devynck, J. Electroanal. Chem. 452 (1998) 127.

    Google Scholar 

  22. V. Chauvaut, M. Cassir and Y. Denos, Electrochim. Acta 43 (1998) 1991.

    Google Scholar 

  23. F. Culkin and J.P. Riley, Anal. Chem. 24 (1961) 167.

    Google Scholar 

  24. P. Burroughs, A. Hammett, A.F. Orchard and G. Thornton, J. Chem. Soc., Dalton Trans. (1976) 1686.

  25. M. Romeo, K. Bak, J. El Fallah, F. Le Normand and L. Hilaire, Surf. Interface Anal. 20 (1993) 508.

    Google Scholar 

  26. A.E. Hughes, R.J. Taylor, B.R.W. Hinton and L. Wilson, Surf. Interface Anal. 23 (1995) 540.

    Google Scholar 

  27. E. Wuilloud, B. Deley, W.D. Schneider and Y. Baer, Phys. Rev. Lett. 53 (1984) 202.

    Google Scholar 

  28. M.P. Seah and W.A. Dench, Surf. Interface Anal. 1 (1979) 2.

    Google Scholar 

  29. J. Osterwalder, M. Sagurton, P.J. Orders, C.S. Fadley, B.D. Hermsmeir and D.J. Friedman, J. Electron Spectros. Relat. Phenom. 48 (1989) 55.

    Google Scholar 

  30. J.H. Scofield, J. Electron Spectros. Relat. Phenom. 8 (1976) 129.

    Google Scholar 

  31. G. Deroubaix and P. Marcus, Surf. Interface Anal. 18 (1992) 39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauvaut, V., Albin, V., Schneider, H. et al. Study of cerium species in molten Li2CO3–Na2CO3 in the conditions used in molten carbonate fuel cells. Part I: Thermodynamic, chemical and surface properties. Journal of Applied Electrochemistry 30, 1405–1413 (2000). https://doi.org/10.1023/A:1026595117970

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026595117970

Navigation