Skip to main content
Log in

Influence of the Physical Structure of Flax Fibres on the Mechanical Properties of Flax Fibre Reinforced Polypropylene Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This study investigates the influence of the physical structure of flax fibres on the mechanical properties of polypropylene (PP) composites. Due to their composite-like structure, flax fibres have relatively weak lateral bonds which are in particular present in flax fibres that are often used in natural fibre mat reinforced thermoplastics (NMT). These weak bonds can be partly removed by combing the fibres. In order to study the influence of the physical structure of flax fibres on NMT tensile and flexural properties, uncombed and combed flax fibre reinforced PP composites were manufactured via a wet laid process. The influence of improved fibre-matrix adhesion was studied using maleic-anhydride grafted PP. Results indicated that the flax physical structure has a significant effect on flax-PP composite properties and that the flax fibre reinforced PP properties are similar to values predicted with existing micromechanical models. The tensile modulus of flax-PP composites can fairly compete with commercial glass mat reinforced thermoplastic (GMT) modulus, the strength, however, both tensile and flexural, can not. In order to rise the strength of flax fibre reinforced PP composites to the level of GMT strength, the flax fibres have to be further isolated to elementary flax fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berglund, L. A. and Ericson, M. L., 'Glass Mat Reinforced Polypropylene', in Polypropylene: Structure, Blends and Composites, J. Karger-Kocsis (ed.), Vol. 3, Chapman & Hall, London, 1995, p. 202.

    Google Scholar 

  2. Dittmar, H., 'Erster thermoplastischer Verbundwerkstoff für die Großserie', Plastverarbeiter 42(4), 1991, 83–90.

    Google Scholar 

  3. Fölster, Th. and Michaeli, W., 'Flachs – eine nachwachsende Verstärkungsfaser für Kunststoffe?', Kunststoffe 83(9), 1993, 687–691.

    Google Scholar 

  4. Schlöser, Th. and Fölster, Th., 'Fahrzeugbau und Ökologie – Naturfaserverstärkte Kunststoffbauteile im Fahrzeuginnenbereick', Kunststoffe 85(3), 1993, 319–321.

    Google Scholar 

  5. Mieck, K.-P. and Reußmann, T., 'Flachs versus Glas', Kunststoffe 85(3), 1995, 366–370.

    Google Scholar 

  6. Sanadi, A. R., Caulfield, D. F., Jacobson, R. E. and Rowell, R. M., 'Renewable Agricultural Fibers as Reinforcing Fillers in Plastics: Mechanical Properties of Kenaf Fiber-Polypropylene Composites', Ind.Eng.Chem.Res. 34, 1995, 1889–1896.

    Google Scholar 

  7. Sotton, M. and Ferrari, M., 'Le Lin Ultra-Affiné par le traitement Hydrolyse Flash', l'Industrie Textile 1197, 1989, 58–60.

    Google Scholar 

  8. Bos, H. L., Van den Oever, M. J. A., and Peters, O. C. J. J., in preparation.

  9. Heijenrath, R. and Peijs, T., 'Natural-Fibre-Mat-Reinforced Thermoplastic Composites based on Flax Fibres and Polypropylene', Adv.Comp.Let. 5(3), 1996, 81–85.

    Google Scholar 

  10. Peijs, T., Garkhail, S., Heijenrath, R., Van den Oever, M., and Bos, H., 'Thermoplastic Composites based on Flax Fibres and Polypropylene: Influence of Fibre Length and Fibre Volume Fraction on Mechanical Properties', Macomol.Symp. 127, 1998, 193–203.

    Google Scholar 

  11. Mieck, K.-P., Lützekendorf, R., and Reussmann, T., 'Needle-Punched Hybrid Nonwovens of Flax and PP Fibres – Textile Semiproducts for Manufacturing of Fibre Composites', Polymer Composites 17(6), 1996, 873–878.

    Google Scholar 

  12. Karmaker, A. C. and Youngquist, J. A., 'Injection Molding of Polypropylene Reinforced with Short Jute Fibers', J.Appl.Pol.Sci. 62, 1996, 1147–1151.

    Google Scholar 

  13. Sanadi, A. R., Young, R. A., Clemons, C., and Rowell, R. M., 'Recycled Newspaper Fibers as Reinforcing Fillers in Thermoplastics: Part 1 – Analysis of Tensile and Impact Properties in Polypropylene', J.Reinf.Plast.Comp. 13(1), 1994, 54–67.

    Google Scholar 

  14. Van den Oever, M. J. A. and Bos, H. L., 'Critical Fibre Length and Apparent Interfacial Shear Strength of Single Flax Fibre Polypropylene Compsites', Adv.Comp.Let. 7(3), 1998.

  15. Hull, D., An Introduction to Composite Materials, Cambridge University Press, Cambridge, 1981.

    Google Scholar 

  16. von Turkovich, R. and Erwin L., 'Fiber Fracture in Reinforced Thermoplastic Processing', Polymer Eng.Sci. 23(13), 1983, 743–749.

    Google Scholar 

  17. Rijsdijk, H. A., Contant, M., and Peijs, A. A. J. M., 'Continuous Glass Fibre Reinforced Polypropylene Composites: I. Influence of Maleic-Anhydride Modified Polypropylene on Mechanical Properties', Composites Sci.Technol. 48, 1993, 161–172.

    Google Scholar 

  18. Snijder, M. H. B., Wissing, E., and Modder, J. F., 'Polyolefins and Engineering Plastics Reinforced with Annual Plant Fibres', in Proc.4th Int.Conf.on Woodfiber-Comp., Madison, USA, 1997, pp. 181–191.

  19. Mieck, K.-P., Nechwatal, A., and Knobelsdorf, C., 'Faser-Matrix-Haftung in Kunststoffverbunden aus thermoplastischer Matrix und Flachs; 2: die Anwendung von funktionalisiertem Polypropylen', Angew.Makromol.Chem. 225, 1995, 37–49 (Nr. 3896).

    Google Scholar 

  20. Cox, H. L., 'The Elasticity and Strength of Paper and Other Fibreous Materials', British J.Appl. Phys. 3, 1952, 72–79.

    Google Scholar 

  21. Krenchel, H., 'Fibre Reinforcement – Theoretical and Practical Investigations of the Elasticity and Strength of Fibre-Reinforced Materials', Thesis, Akademisk Forlag, Copenhagen, 1964.

    Google Scholar 

  22. Kelly, A. and Tyson, W. R., 'Tensile Properties of Fibre-Reinforced Metals: Copper/Tungsten and Copper/Molybdenum', J.Mech.Phys.Solids 13, 1965, 329–350.

    Google Scholar 

  23. Thomason, J. L. and Vlug, M. A., 'Influence of Fibre Length and Concentration on the Properties of Glass Fibre-Reinforced Polypropylene: 1) Tensile and Flexural Modulus', Composites 27A, 1996, 477–484.

    Google Scholar 

  24. Thomason, J. L., Vlug, M. A., Schipper, G., and Krikor, H. G. L. T., 'The Influence of Fibre Length and Concentration on the Properties of Glass Fibre-Reinforced Polypropylene: 3) Strength and Strain at Failure', Composites 27A, 1996, 1075–1084.

    Google Scholar 

  25. Kessler, R. W., Becker, U., Kohler, R., and Goth, B., 'Steam Explosion of Flax – a Superior Technique for Upgrading Fibre Value', Biomass and Bioen. 14(3), 1998, 237–249.

    Google Scholar 

  26. Kohler, R. and Wedler, M., 'Non-Textile Applications of Flax Fibres', Techtextil-Symposium, 1994, Vortrags-Nr 331.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Oever, M.J.A., Bos, H.L. & van Kemenade, M.J.J.M. Influence of the Physical Structure of Flax Fibres on the Mechanical Properties of Flax Fibre Reinforced Polypropylene Composites. Applied Composite Materials 7, 387–402 (2000). https://doi.org/10.1023/A:1026594324947

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026594324947

Navigation