Skip to main content
Log in

Thermo-compression forming of flax fibre-reinforced polyamide 6 composites: influence of the fibre thermal degradation on mechanical properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermal degradation of plant-based fibres at high temperature is a main issue when manufacturing vegetal fibres/thermoplastic composites due to the high melting point of engineering polymers such as polyamide 6 (PA6). This paper aims at investigating the influence of the thermo-compression forming process parameters, such as the temperature and consolidation time, on the mechanical properties of continuous flax fibre-reinforced PA6 composites. Woven fabric flax/PA6 composites were prepared by compression moulding using a film-stacking process under different consolidation conditions according to a two-factor Doehlert design of experiments. Tensile and flexural properties were assessed. A second-order polynome was used to correlate the processing parameters and the mechanical properties (i.e. stiffness, strength and strain at break). Fracture mode changes with the consolidation conditions. The weakening of the fibres and eventually of the composite performances was ascribed to the increase in flax fibre thermal degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. NabiSaheb D, Jog JP (1999) Natural fibre polymer composites: a review. Adv Polym Technol 18(4):351–363. doi:10.1002/(SICI)1098-2329(199924)18:4<351:AID-ADV6>3.3.CO;2-O

    Article  Google Scholar 

  2. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264. doi:10.1016/S0266-3538(03)00096-4

    Article  Google Scholar 

  3. Bos HL (2004) The potential of flax fibres as reinforcement for composite materials. PhD thesis, Technische Universiteit Eindhoven, Eindhoven

  4. Müssig J (2010) Industrial applications of natural fibres: structure, properties and technical applications. Wiley, New York, ISBN: 978-0-470-69508-1

  5. Manfredi LB, Rodriguez ES, Wladyka-Przybylak M, Vazquez A (2006) Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym Degrad Stab 91:255–261. doi:10.1016/j.polymdegradstab.2005.05.003

    Article  Google Scholar 

  6. El-Sabbagh A, Steuernagel L, Ziegmann G, Meiners D, Toepfer O (2014) Processing parameters and characterisation of flax fibre reinforced engineering plastic composites with flame retardant fillers. Compos B Eng 62:12–18. doi:10.1016/j.compositesb.2014.02.009

    Article  Google Scholar 

  7. Liang S, Gning PB, Guillaumat L (2014) Quasi-static behaviour and damage assessment of flax/epoxy composites. Mater Des 2015(67):344–353. doi:10.1016/j.matdes.11.048

    Google Scholar 

  8. Liang S, Gning PB, Guillaumat L (2012) A comparative study of fatigue behaviour of flax/epoxy and glass/epoxy composites. Compos Sci Technol 72(5):535–543. doi:10.1016/j.compscitech.2012.01.011

    Article  Google Scholar 

  9. Gning PB, Liang S, Guillaumat L, Pui WJ (2011) Influence of process and test parameters on the mechanical properties of flax/epoxy composites using response surface methodology. J Mater Sci 46:6801–6811. doi:10.1007/s10853-011-5639-9

    Article  Google Scholar 

  10. Nguyen VH, Deleglise-Lagardere M, Park CH (2015) Modeling of resin flow in natural fiber reinforcement for liquid composite molding processes. Compos Sci Technol 113:38–45. doi:10.1016/j.compscitech.2015.03.016

    Article  Google Scholar 

  11. Li Y, Li Q, Ma H (2015) The voids formation mechanisms and their effects on the mechanical properties of flax fiber reinforced epoxy composites. Compos A Appl Sci Manuf 72:40–48. doi:10.1016/j.compositesa.2015.01.029

    Article  Google Scholar 

  12. Zhang D, Milanovic NR, Zhang Y, Su F, Miao M (2013) Effects of humidity conditions at fabrication on the interfacial shear strength of flax/unsaturated polyester composites. Compos B Eng 2014(60):186–192. doi:10.1016/j.compositesb.12.031

    Google Scholar 

  13. Le Duigou A, Kervoelen A, Le Grand A, Nardin M, Baley C (2014) Interfacial properties of flax fibre–epoxy resin systems: existence of a complex interphase. Compos Sci Technol 100:152–157. doi:10.1016/j.compscitech.2014.06.009

    Article  Google Scholar 

  14. Nguyen VH, Lagardere M, Park CH, Panier S (2014) Permeability of natural fibre reinforcement for liquid composite molding processes. J Mater Sci 49(18):6449–6458. doi:10.1007/s10853-014-8374-1

    Article  Google Scholar 

  15. Le Duigou A, Davies P, Baley C (2009) Seawater ageing of flax/poly(lactic acid) biocomposites. Polym Degrad Stab 94:1151–1162. doi:10.1016/j.polymdegradstab.2009.03.025

    Article  Google Scholar 

  16. Gassan J, Bledzki AK (2001) Thermal degradation of flax and jute fibers. J Appl Polym Sci 82:1417–1422

    Article  Google Scholar 

  17. Bos JH, Müssig J, van den Oever MJA (2006) Mechanical properties of short-flax fibre reinforced compounds. Compos A Appl Sci Manuf 37:1591–1604. doi:10.1016/j.compositesa.2005.10.011

    Article  Google Scholar 

  18. Baley C, Le Duigou A, Bourmaud A, Davies P (2012) Influence of drying on the mechanical behaviour of flax fibres and their unidirectional composites. Compos A Appl Sci Manuf 43:1226–1233. doi:10.1016/j.compositesa.2012.03.005

    Article  Google Scholar 

  19. Gourier C, Le Duigou A, Bourmaud A, Baley C (2014) Mechanical analysis of elementary flax fibre tensile properties after different thermal cycles. Compos A Appl Sci Manuf 64:159–166. doi:10.1016/j.compositesa.2014.05.006

    Article  Google Scholar 

  20. Wielage B, Lampke T, Marx G, Nestler N, Starke D (1999) Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene. ThermochimicaActa 337:169–177. doi:10.1016/S0040-6031(99)00161-6

    Article  Google Scholar 

  21. Sobczak L, Lang RW, Haider A (2012) Polypropylene composites with natural fibers and wood: general mechanical property profiles. Compos Sci Technol 72:550–557. doi:10.1016/j.compscitech.2011.12.013

    Article  Google Scholar 

  22. Lafranche E, Oliveira V, Martins CI, Krawczak P (2015) Prediction of injection-moulded flax fibre reinforced polypropylene tensile properties through a micro-morphology analysis. J Compos Mater 49(1):113–128. doi:10.1177/0021998313514875

    Article  Google Scholar 

  23. Arbelaiz A, Fernandez B, Ramos JA, Mondragon I (2006) Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: effect of treatments. Thermochim Acta 440:111–121. doi:10.1016/j.tca.2005.10.016

    Article  Google Scholar 

  24. Arbelaiz A, Fernandez B, Cantero G, Llano-Ponte R, Valea A, Mondragon I (2005) Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Compos A Appl Sci Manuf 36:1637–1644. doi:10.1016/j.composittesa.2005.03.021

    Article  Google Scholar 

  25. Arbelaiz A, Fernandez B, Cantero G, Llano-Ponte R, Valea A, Mondragon I (2005) Mechanical properties of short flax fibre bundle/polypropylene composites: influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos Sci Technol 65:1582–1592. doi:10.1016/jcompscitech.2005.01.008

    Article  Google Scholar 

  26. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42:856–873. doi:10.1016/j.compositesb.2011.01.010

    Article  Google Scholar 

  27. Garkhail S, Wieland B, George J, Soykeabkaew N, Peijs T (2009) Transcrystallization in PP/flax composites and its effect on interfacial and mechanical properties. J Mater Sci 44(2):510–519. doi:10.1007/s10853-008-3089-9

    Article  Google Scholar 

  28. Facca AG, Kortschot MT, Yan N (2006) Predicting the elastic modulus of natural fibre reinforced thermoplastics. Compos A Appl Sci Manuf 37:1660–1671. doi:10.1016/j.compositesa.2005.10.006

    Article  Google Scholar 

  29. Facca AG, Kortschot MT, Yan N (2007) Predicting the tensile strength of natural fibre reinforced thermoplastics. Compos Sci Technol 67:2454–2466. doi:10.1016/jcompscitech.2006.12.018

    Article  Google Scholar 

  30. Ozen E, Kiziltas A, Kiziltas EE, Gardner DJ (2013) Natural fiber blend-nylon 6 composites. Polym Compos 34(4):544–553. doi:10.1002/pc.22463

    Article  Google Scholar 

  31. Xu X (2008) Cellulose fiber reinforced nylon 6 or nylon 66 composites. PhD thesis, Georgia Institute of Technology

  32. Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos A Appl Sci Manuf 33:939–948. doi:10.1016/S1359-835X(02)00040-4

    Article  Google Scholar 

  33. Santos PA, Spinace MAS, Fermoselli KKG, De Paoli MA (2007) Polyamide-6/vegetal fiber composite prepared by extrusion and injection molding. Compos A Appl Sci Manuf 38:2404–2411. doi:10.1016/j.compositesa.2007.08.011

    Article  Google Scholar 

  34. Guillaumat L (2000) Reliability of composite structures- impact loading. Compos Struct 76:163–172. doi:10.1016/S0045-7949(99)00166-2

    Article  Google Scholar 

  35. Madsen B, Thygesen A, Lilholt H (2009) Plant fibre composites—porosity and stiffness. Compos Sci Technol 2009(69):1057–1069. doi:10.1016/j.compscitech.01.016

    Article  Google Scholar 

  36. Song YS, Lee JT, Ji DS, Kim MW, Lee SH, Youn JY (2012) Viscoelastic and thermal behavior of woven hemp fiber reinforced poly(lactic acid) composites. Compos B Eng 43:856–860. doi:10.1016/j.compositesb.2011.10.021

    Article  Google Scholar 

  37. Bourmaud A, Morvan C, Baley C (2010) Importance of fibre preparation to optimize the surface and mechanical properties of unitary flax fiber. Ind Crops Prod 32:662–667. doi:10.1016/j.indcrop.2010.08.002

    Article  Google Scholar 

  38. Van De Velde K, Kiekens P (2002) Thermal degradation of flax: the determination of kinetic parameters with thermogravimetric analysis. J Appl Polym Sci 83(12):2634–2643. doi:10.1002/app.10229

    Article  Google Scholar 

  39. Qua EH, Hornsby PR, Sharma HSS, Lyons G (2011) Preparation and characterisation of cellulose nanofibres. J Mater Sci 46(18):6029–6045. doi:10.1007/s10853-011-5565-x

    Article  Google Scholar 

  40. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. doi:10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  41. Ciobanu C, Ungureanu M, Ignat L, Ungureanu D, Popa VI (2004) Properties of lignin–polyurethane films prepared by casting method. Ind Crops Prod 20:231–241. doi:10.1016/j.indcrop.2004.04.024

    Article  Google Scholar 

  42. Araujo JR, Adamo CB, De Paoli MA (2011) Conductive composites of polyamide-6 with polyaniline coated vegetal fiber. Chem Eng J 174:425–431. doi:10.1016/j.cej.2011.08.050

    Article  Google Scholar 

  43. Gorshkova TA, Gurjanov OP, Mikshina PV, Ibragimova NN, Mokshina NE, Salnikov VV, Ageeva MV, Amenitskii SI, Chernova TE, Chemikosova SB (2010) Specific type of secondary cell wall formed by plant fibers. Russ J Plant Physiol 57(3):328–341. doi:10.1134/S1021443710030040

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to Dehondt Technologies® (France) for kindly supplying flax fibre fabric (Nattex N/2D600) and to the Nord-Pas-de-Calais Region (France) for funding Hedi Nouri’s post-doctoral grant (Contract No. 14002212). The authors also acknowledge International Campus on Safety and Intermodality in Transportation (CISIT), European Community (FEDER) and Nord-Pas-de-Calais Region for funding the TGA equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoxiong Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Nouri, H. & Lafranche, E. Thermo-compression forming of flax fibre-reinforced polyamide 6 composites: influence of the fibre thermal degradation on mechanical properties. J Mater Sci 50, 7660–7672 (2015). https://doi.org/10.1007/s10853-015-9330-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9330-4

Keywords

Navigation