Skip to main content
Log in

Evolution of DNA in Heterochromatin: the Drosophila Melanogaster Sibling Species Subgroup as a Resource

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The Drosophila melanogasterspecies subgroup is a closely-knit collection of eight sibling species whose relationships are well defined. These species are too close for most evolutionary studies of euchromatic genes but are ideal to investigate the major changes that occur to DNA in heterochromatin over short periods during evolution. For example, it is not known whether the locations of genes in heterochromatin are conserved over this time. The 18S and 28S ribosomal RNA genes can be considered as genuine heterochromatic genes. In D. melanogasterthe rRNA genes are located at two sites, one each on the X and Y chromosome. In the other seven sibling species, rRNA genes are also located on the sex chromosomes but the positions often vary significantly, particularly on the Y. Furthermore, rDNA has been lost from the Y chromosome of both D. simulansand D. sechellia, presumably after separation of the line leading to present-day D. mauritiana.We conclude that changes to chromosomal position and copy number of rDNA arrays occur over much shorter evolutionary timespans than previously thought. In these respects the rDNA behaves more like the tandemly repeated satellite DNAs than euchromatic genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashburner, M., 1989. Drosophila: A Laboratory Handbook. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Ault, J.G. & C.L. Rieder, 1994. Meiosis in Drosophilamales. I. The question of separate conjunctive mechanisms for the XY and autosomal bivalents. Chromosoma 103: 352–356.

    PubMed  CAS  Google Scholar 

  • Caccone, A., E.N. Moriyama, J.M. Gleason, L. Nigro & J. Powell, 1996. A molecular phylogeny for the Drosophila melanogastersubgroup and the problem of polymorphism data. Mol. Biol. Evol. 13: 1224–1232.

    PubMed  CAS  Google Scholar 

  • Cariou, M.L., 1987. Biochemical phylogeny of the eight species in the Drosophila melanogastersubgroup, including D. sechelliaand D. orena. Genet. Res. Camb. 50: 181–185.

    CAS  Google Scholar 

  • Danilevskaya, O.N., C. Tan, J. Wong, M. Alibhai & M.L. Pardue, 1998. Unusual features of the Drosophila melanogastertelomere transposable element HeT-A are conserved in Drosophila yakubatelomere elements. Proc. Natl. Acad. Sci. USA 95: 3770–3775.

    Article  PubMed  CAS  Google Scholar 

  • Davis, A.W., J. Roote, T. Morley, K. Sawamura, S. Herrmann & M. Ashburner, 1996. Rescue of hybrid sterility in crosses between D. melanogasterand D. simulans. Nature 380: 157–159.

    Article  PubMed  CAS  Google Scholar 

  • Hennig, W., B. Link & O. Leoncini, 1975. The location of the nucleolus organizer regions in Drosophila hydei. Chromosoma 51: 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Hirai H., M.T. Yamamoto, R.W. Taylor & H.T. Imai, 1996. Genomic dispersion of 28S rDNA during karyotypic evolution in the ant genus Myrmecia(Formidicae). Chromosoma 105: 190–196.

    Article  PubMed  CAS  Google Scholar 

  • Hilliker, A.J., R. Appels & A. Schalet, 1980. The genetic analysis of D. melanogasterheterochromatin. Cell 21: 607–619.

    Article  PubMed  CAS  Google Scholar 

  • Lachaise, D.L., M-L. Cariou, J.R. David, F. Lemeunier, L. Tsacas & M. Ashburner, 1988. Historical biogeography of the Drosophila melanogasterspecies subgroup. Evol. Biol. 22: 159–225.

    Google Scholar 

  • Lee, W.H. & T.K. Watanabe, 1987. Evolutionary genetics of the Drosophila melanogastersubgroup. I. Phylogenetic relationships based on matings, hybrids and proteins. Jpn. J. Genet. 62: 225–239.

    Google Scholar 

  • Lemeunier, F. & M. Ashburner, 1984. Relationships within the melanogasterspecies subgroup of the genus Drosophila(Sophophora). IV. The chromosomes of two new species. Chromosoma 89: 343–351.

    Article  Google Scholar 

  • Lemeunier, F., J.R. David, L. Tsacas & M. Ashburner, 1986. The melanogasterspecies group, pp. 147–256 in The Genetics and Biology of Drosophila, edited by M. Ashburner, H.L. Carson & J.N. Thompson. Vol. 3e, Academic Press, New York.

    Google Scholar 

  • Livak, K.J., 1984. Organization and mapping of a sequence on the Drosophila melanogasterX and Y chromosomes that is transcribed during spermatogenesis. Genetics 107: 611–634.

    PubMed  CAS  Google Scholar 

  • Lohe, A.R., 1981. The satellite DNAs of Drosophila simulans. Genet. Res. Camb. 38: 237–250.

    CAS  Google Scholar 

  • Lohe, A.R. & P.A. Roberts, 1990. An unusual Y chromosome of Drosophila simulanscarrying amplified rDNA spacer without rRNA genes. Genetics 125: 399–406.

    PubMed  CAS  Google Scholar 

  • Lohe, A.R. & A.J. Hilliker, 1995. Return of the H-word (heterochromatin). Curr. Opin. Genet. Dev. 5: 746–755.

    Article  PubMed  CAS  Google Scholar 

  • Lohe, A.R., E.N. Moriyama, D-A. Lidholm & D.L. Hartl, 1995. Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol. Biol. Evol. 12: 62–72.

    PubMed  CAS  Google Scholar 

  • Long, E.O. & I.B. Dawid, 1980. Repeated genes in eukaryotes. Annu. Rev. Biochem. 49: 727–764.

    Article  PubMed  CAS  Google Scholar 

  • McKee, B.D., 1996. The license to pair: identification of meiotic pairing sites in Drosophila. Chromosoma 105: 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Moschetti, R., C. Caggese, P. Barsanti & R. Caizzi, 1998. Intraand interspecies variation among Bari-1 elements of the melanogasterspecies group. Genetics 150: 239–250.

    PubMed  CAS  Google Scholar 

  • Palopoli, M.F., A.W. Davis & C.I. Wu, 1996. Discord between the phylogenies inferred from molecular versus functional data: uneven rates of functional evolution or low levels of gene flow? Genetics 144: 1321–1328.

    PubMed  CAS  Google Scholar 

  • Pimpinelli S., M. Berloco, L. Fanti, P. Dimitri, S. Bonaccorsi, E. Marchetti, R. Caizzi, C. Caggese & M. Gatti, 1995. Transposable elements are stable structural components of Drosophila melanogasterheterochromatin. Proc. Natl. Acad. Sci. USA 92: 3804–3808.

    Article  PubMed  CAS  Google Scholar 

  • Roiha, H., J.R. Miller, L.C. Woods & D.M. Glover, 1981. Arrangements and rearrangements of sequences flanking the two types of rDNA insertion in D. melanogaster. Nature290: 749–753.

    Article  PubMed  CAS  Google Scholar 

  • Schlotterer, C., M-T. Hauser, A. von Haeseler & D. Tautz, 1994. Comparative evolutionary analysis of rDNA regions in Drosophila. Mol. Biol. Evol. 11: 513–522.

    PubMed  CAS  Google Scholar 

  • Stuart, W.D., J.G. Bishop, H.L. Carson & M.B. Frank, 1981. Location of the 18S/28S ribosomal RNA gene in two Hawaiian Drosophilaspecies by monoclonal immunological identification of RNA.DNA hybrids in situ. Proc. Natl. Acad. Sci. USA 78: 3751–3754.

    Article  PubMed  CAS  Google Scholar 

  • Tartof, K.D., 1979. Evolution of transcribed and spacer sequences in ribosomal RNA genes of Drosophila. Cell 17: 607–614.

    Article  PubMed  CAS  Google Scholar 

  • Tautz, D., J.M. Hancock, D.A. Webb, C. Tautz & G.A. Dover, 1988. Complete sequences of the rRNA genes of Drosophila melanogaster. Mol. Biol. Evol. 5: 366–376.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohe, A.R., Roberts, P.A. Evolution of DNA in Heterochromatin: the Drosophila Melanogaster Sibling Species Subgroup as a Resource. Genetica 109, 125–130 (2000). https://doi.org/10.1023/A:1026588217432

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026588217432

Navigation