Skip to main content
Log in

Immunohistochemical localization of type II and type I collagens in articular cartilage of the femoral head of dexamethasone-treated rats

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

The immunohistochemical localization of type II and type I collagens was examined in the articular cartilage of the femoral head of growing rats injected systemically with 5 mg kg−1 dexamethasone for 2 weeks every other day. The intensities of immunostaining for type II collagen, measured by microphotometry, was highest in the flattened cell layer and high in the hypertrophic cell layer, moderate in the proliferative cell and transitional cell layers and low in the superficial layer. After dexamethasone administration, the intensities decreased markedly in the flattened cell layer and slightly in the hypertrophic cell layer, although the decreases in other layers were negligible. The staining intensities for type I collagen were highest in the flattened cell layer, low in the superficial and transitional cell layers and very low in the proliferative and hypertrophic cell layers. After dexamethasone administration, the intensities increased markedly in the flattened cell layer and slightly in the superficial and proliferative cell layers, but did not change in the transitional and hypertrophic cell layers. Thus, dexamethasone administration caused a decrease in type II collagen and an increase in type I collagen in the matrix of the surface portion of articular cartilage. The composition of isoforms of collagen in the matrix changed after the steroid administration. The results strongly suggest that the shift in collagen composition from type II to type I predominance is a cause of the degeneration of the articular cartilage after glucocorticoid administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behrens, F., Shepard, N. & Mitchell, N. (1976) Metabolic recovery of articular cartilage after intra-articular injections of glucocorticoid. J. Bone Joint Surg. 58A, 1157-60.

    CAS  Google Scholar 

  • Bonassar, L.J., Frank, E.H., Murray, J.C., Paguio, C.G., Moore, V.L., Lark, M.W., Sandy, J.D., Wu, J.-J., Eyre, D.R. & Grodzinsky, A.J. (1995) Changes in cartilage composition and physical properties due to stromelysin degradation. Arthritis Rheum. 38, 173-83.

    Article  PubMed  CAS  Google Scholar 

  • Brocklehurst, R., Bayliss, M.T., Maroudas, A., Coysh, H.L., Freeman, M.A.R., Revell, P.A. & Ali, S.Y. (1984) The composition of normal and osteoarthritic articular cartilage from human knee joints. J. Bone Joint Surg. 66A, 95-106.

    Google Scholar 

  • Broom, N.D. (1986) The collagenous architecture of articular cartilage. A synthesis of ultrastructure and mechanical function. J. Rheumatol. 13, 142-52.

    PubMed  CAS  Google Scholar 

  • Cameron, C.C., Hembry, R.M. & Reynolds, J.J. (1989) Immunolocalization of metalloproteinases and their inhibitor in the rabbit growth plate. J. Bone Joint Surg. 71A, 580-93.

    Google Scholar 

  • Eyre, D.R. & Muir, H. (1975) The distribution of different molecular species of collagen in fibrous, elastic and hyaline cartilages of the pig. Biochem. J. 151, 595-602.

    PubMed  CAS  Google Scholar 

  • Goldwasser, M., Astrey, T., Van Der Rest, M. & Glorieux, F.H. (1982) Analysis of the type of collagen present in osteoarthritic human cartilage. Clin. Orthop. 167, 296-302.

    PubMed  CAS  Google Scholar 

  • Guenther, H.L., Felix, R. & Fleisch, H. (1984) Comparative study of deflazacort, a new synthetic corticosteroid, and dexamethasone on the synthesis of collagen in different rat bone cell populations and rabbit articular chondrocytes. Calcif. Tissue Int. 36, 145-52.

    Article  PubMed  CAS  Google Scholar 

  • Harris Jr., E.D. & Vater, C.A. (1982) Vertebrate collagenases. Methods Enzymol. 82, 423-52.

    Article  PubMed  CAS  Google Scholar 

  • Itani, T., Kanai, K., Watanabe, J., Ogawa, R. & Kanamura, S. (1992) Quantitative analysis of rough endoplasmic reticulum in chondrocytes of articular and tracheal cartilage of rabbits following the systemic administration of hydrocortisone. J. Anat. 181, 357-63.

    PubMed  CAS  Google Scholar 

  • Kiviranta, I., Jurvelin, J., Tammi, M., SÅÅmÅnen, A-M. & Helminen, H.J. (1987a) Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs. Arthritis Rheum. 30, 801-9

    Article  PubMed  CAS  Google Scholar 

  • Kiviranta, I., Tammi, M., Jurvelin, J. & Helminen, H.J. (1987b) Topographical variation of glycosaminoglycan content and cartilage thickness in canine knee (stifle) joint cartilage. Application of the microspectrophotometric method. J. Anat. 150, 265-76.

    PubMed  CAS  Google Scholar 

  • Kosher, R.A., Kulyk, W.M. & Gay, S.W. (1986) Collagen gene expression during limb cartilage differentiation. J. Cell. Biol. 102, 1151-6.

    Article  PubMed  CAS  Google Scholar 

  • Lipshitz, H., Etheredge III, R. & Glimcher, M.J. (1976) Changes in the hexosamine content and swelling ratio of articular cartilage as functions of depth from the surface. J. Bone Joint Surg. 58A, 1149-53.

    Google Scholar 

  • Luder, H.U., Leblond, C.P. & Von Der Mark, K. (1988) Cellular stages in cartilage formation as revealed by morphometry, radioautography and type II collagen immunostaining of the mandibular condyle from weanling rats. Am. J. Anat. 182, 197-214.

    Article  PubMed  CAS  Google Scholar 

  • Maroudas, A., Muir, H. & Wingham, J. (1969) The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. Biochim. Biophys. Acta 177, 492-500.

    PubMed  CAS  Google Scholar 

  • Mizoguchi, I., Nakamura, M., Takahashi, I., Kagayama, M. & Mitani, H. (1990) An immunohistochemical study of localization of type I and type II collagens in mandibular condylar cartilage compared with tibial growth plate. Histochemistry 93, 593-9.

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz, R.W., Davis, W., Sammarco, J., Mast, W. & Chase, S.W. (1970) Experimentally induced corticosteroid arthropathy. Arthritis Rheum. 13, 236-43.

    Article  PubMed  CAS  Google Scholar 

  • Mow, V.C., Lai, W.M., Eisenfeld, J. & Redler, I. (1974) Some surface characteristics of articular cartilage. II. On the stability of articular surface and a possible biomechanical factor in etiology of chondrodegeneration. J. Biomechanics 7, 457-68.

    Article  CAS  Google Scholar 

  • Muir, H. & Maroudas, A. (1970) The distribution of collagen in human articular cartilage with some of its physiological implications. J. Bone Joint Surg. 52B, 554-63.

    Google Scholar 

  • MÜller-Glauser, W., Humbel, B., Glatt, M., StrÅuli, P., Winterhalter, K.H. & Bruckner, P. (1986) On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils. J. Cell Biol. 102, 1931-9.

    Article  PubMed  Google Scholar 

  • Nerlich, A.G., Wiest, I. & Von Der Mark, K. (1993) Immunohistochemical analysis of interstitial collagens in cartilage of different stages of osteoarthrosis. Virchows Archiv B Cell Pathol. 63, 249-55.

    Article  CAS  Google Scholar 

  • Oikarinen, A.I., Vuorio, E.I., Zaragoza, E.J., Palotie, A., Chu, M.-L. & Uitto, J. (1988) Modulation of collagen metabolism by glucocorticoids. Biochem. Pharmacol. 37, 1451-62.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, R.K. & Miller, E.J. (1978) Physicochemical characterization and molecular organization of the collagen A and B chains. Biochemistry 17, 3442-8.

    Article  PubMed  CAS  Google Scholar 

  • Salter, R.B., Gross, A. & Hall, J.H. (1967) Hydrocortisone arthropathy. An experimental investigation. Can. Med. Assoc. J. 97, 374-7.

    PubMed  CAS  Google Scholar 

  • Sandberg, M. & Vuorio, E. (1987) Localization of type I, II, and III collagen mRNAs in developing human skeletal tissues by in situ hybridization. J. Cell Biol. 104, 1077-84.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, N.E. & Lacey, E. (1973) The influence of corticosteroids on normal and papain-treated articular cartilage in the rabbit. J. Bone Joint Surg. 55B, 197-205.

    Google Scholar 

  • Shull, S. & Cutroneo, K.R. (1983) Glucocorticoids coordinately regulate procollagens type I and type III synthesis. J. Biol. Chem. 258, 3364-9.

    PubMed  CAS  Google Scholar 

  • Treilleux, I., Mallein-Gerin, F., Le Guellec, D. & Herbage, D. (1992) Localization of the expression of type I, II, III collagen, and aggrecan core protein genes in developing human articular cartilage. Matrix 12, 221-32.

    PubMed  CAS  Google Scholar 

  • Wardale, R.J. & Duance, V.C. (1993) Quantification and immunolocalisation of porcine articular and growth plate cartilage collagens. J. Cell Sci. 105, 975-84.

    PubMed  CAS  Google Scholar 

  • Watanabe, J. & Kanamura, S. (1991) An improved microphotometry system for measurement of cytochrome P-450 in hepatocyte cytoplasm. J. Histochem. Cytochem. 39, 689-94.

    PubMed  CAS  Google Scholar 

  • Watanabe, J. Kanai, K. & Kanamura, S. (1991) Measurement of NADPH-ferrihemoprotein reductase content in sections of liver. J. Histochem. Cytochem. 39, 1635-43.

    PubMed  CAS  Google Scholar 

  • Watanabe, J., Asaka, Y. & Kanamura, S. (1993a) Postnatal development and sublobular distribution of cytochrome P-450 in rat liver: a microphotometric study. J. Histochem. Cytochem. 41, 397-400.

    PubMed  CAS  Google Scholar 

  • Watanabe, J., Asaka, Y., Fujimoto, S. & Kanamura, S. (1993b) Densities of NADPH-ferrihemoprotein reductase and cytochrome P-450 molecules in the endoplasmic reticulum membrane of rat hepatocytes. J. Histochem. Cytochem. 41, 43-9.

    PubMed  CAS  Google Scholar 

  • Watanabe, J., Asaka, Y., Tanaka, T. & Kanamura, S. (1994) Measurement of NADPH-cytochrome P-450 reductase content in rat liver sections by quantitative immunohistochemistry with a video image processor. J. Histochem. Cytochem. 42, 1161-7.

    PubMed  CAS  Google Scholar 

  • Watanabe, J., Asaka, Y. & Kanamura, S. (1996a) Periand postnatal changes in reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase content in hepatocytes of rats. Histochem. J. 28, 505-10.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, J., Asaka, Y. & Kanamura, S. (1996b) Relationship between immunostaining intensity and antigen content in sections. J. Histochem. Cytochem. 44, 1451-8.

    PubMed  CAS  Google Scholar 

  • Wu, J.-J., Lark, M.W., Chun, L.E. & Eyre, D.R. (1991) Site of stromelysin cleavage in collagen types II, IX, X, and XI of cartilage. J. Biol. Chem. 266, 5625-8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, M., Watanabe, J., Ogawa, R. et al. Immunohistochemical localization of type II and type I collagens in articular cartilage of the femoral head of dexamethasone-treated rats. J Mol Hist 29, 645–654 (1997). https://doi.org/10.1023/A:1026496530576

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026496530576

Keywords

Navigation