Skip to main content
Log in

Boundary Integral Equations Method for the Analysis of Acoustic Scattering from Line-2 Elastic Targets

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The prediction of the acoustic scattering from elastic structures is a recurrent problem of practical importance as, for example, in underwater detection and target identification. We aim at setting out the diffraction problem of a transient acoustic wave by an axisymmetric shell composed of a cylinder bounded by hemispherical endcaps, called Line-2. Its time-dependent response is expanded in terms of the resonance modes of the fluid-loaded structure. The latter are well suited when the structure is submerged in a heavy fluid: it is an alternative to modal methods whose expansions as series of natural modes of the in vacuo shell are much better for describing the interaction between a structure and a light fluid. The resonance frequencies are defined as solutions of the nonlinear eigenvalue problem described by the set of homogeneous equations governing the structure displacement coupled to the acoustic radiated pressure. The resonance modes of the coupled system are the corresponding eigenvectors.

Both hemisphere and cylinder equations are modeled by the approximation of Donnel and Mushtari which governs thin shells oscillations. The modeling of the sound pressure by a hybrid potential integral representation leads to a system of integro-differential equations defined on the surface of the structure only (boundary integral equations). The unknowns, the hybrid potential density as well as the shell displacement vector, are developed into Fourier series with respect to the natural cylindrical coordinate. Each angular component of the unknown functions is then expanded as series of Legendre polynomials, the coefficients of which are calculated thanks to a Galerkin method derived from the energetic form of the equations.

The whole method can also be applied to predict the response of the coupled structure to a harmonic or a random excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao, X.L., Überall, H., Niemec, J., Décultot, D., Lecroq, F., Maze, G. and Ripoche, J., The resonances of finite-length elastic cylinders and elastic spheroids excited by sound scattering. Journal of the Acoustical Society of America 102 (1997) 49–54.

    Article  ADS  Google Scholar 

  2. Decultot, D. and Maze, G., Diffusion et rayonnement acoustiques de structures élastiques immergées. In: Convention DRET/CNRS No. 94-108, Vol. I (1996).

  3. Huang, H., Transient interaction of plane acoustic waves with a spherical elastic shell. Journal of the Acoustical Society of America 45 (1969) 661–670.

    Article  Google Scholar 

  4. Mindlin, R.D. and Bleich, H.C., Response of an elastic cylindrical shell to transverse step shock wave. Journal of Applied Mechanic 20 (1953) 189–195.

    MATH  MathSciNet  Google Scholar 

  5. Jones-Oliveira, J.B., Transient analytic and numerical results for the fluid-solid interaction of prolate spheroidal shells. Journal of the Acoustical Society of America 99 (1996) 392–407.

    Article  ADS  Google Scholar 

  6. Dubus, L., Modélisation numérique de la diffusion acoustique par Line-2 en régime transitoire. Convention DRET/STDRT No. 95-469 (1996).

  7. Filippi, P.J.T., Diffraction d'une onde acoustique par une cible de forme Line-2. Convention DRET/CNRS No. 94-105 (1996).

  8. Filippi, P.J.T. and Mazzoni, D., Réponse d'une structure excitée par une couche limite turbulente: Série modale et approximation “fluide léger”. In: GDR 1138 Vibroacoustique, Publications du LMA, No. 142 (1995) pp. 95–109.

  9. Filippi, P.J.T., Acoustique Générale, Les Editions de Physique. Collection d'Acoustique. S.F.A. (1997).

  10. Schenck, H.A., Improved integral formulation for acoustic radiation problems. Journal of the Acoustical Society of America 44 (1968) 41–58.

    Article  Google Scholar 

  11. Stepanishen, P.R., Acoustic transient radiation and scattering from fluid-loaded elastic shells using convolution methods. Journal of the Acoustical Society of America 102 (1997) 110–119.

    Article  ADS  Google Scholar 

  12. Hu, F.Q., A fast numerical solution of scattering by a cylinder: Spectral method for the boundary integral equation. Journal of the Acoustical Society of America 96 (1994) 3693–3703.

    Article  ADS  Google Scholar 

  13. Gottlieb, D. and Orszag, S.A., Numerical analysis of spectral method: Theory and applications. Regional Conference Series in Applied Mathematics. CBMS-NSF 26 (1977).

  14. Morse, P. and Feshbach, H., Methods of Theoretical Physics. McGraw-Hill, New York (1953).

    Google Scholar 

  15. W. Flügge, W., 1973 Stresses in shells Second Edition. Berlin: Springer-Verlag.

    Google Scholar 

  16. Bardos, C., Concordel, M. and Lebeau, G., Extension de la théorie de la diffusion pour un corps élastique immergé dans un fluide. Comportement asymptotique des résonances. Journal d'Acoustique 2 (1989) 31–38.

    Google Scholar 

  17. Hwang, W.S., A boundary integral method for acoustic radiation and scattering. Journal of the Acoustical Society of America 101 (1997) 3330–3335.

    Article  ADS  Google Scholar 

  18. Masson, C., Etude expérimentale et analyse du processus d'émission sonore des valves cardiaques artificielles. Thése en Acoustique et Dynamique des Vibrations, No. 207-95-74, Université de la Méditerranée Aix-Marseille II, France (1995).

    Google Scholar 

  19. Filippi, P.J.T., Rayonnement acoustique de structures vibrantes cylindriques. Convention DRET No. 85-064 (1986).

  20. Filippi, P.J.T., Extended sources radiation and Laplace type integral representation: Application to wave propagation above and within layered media. Journal of Sound and Vibration 91(1) (1983) 65–84.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Mattei, P.-O., A two-dimensional Tchebycheff collocation method for the study of the vibration of a baffled fluid-loaded rectangular plate. Journal of Sound and Vibration 196(4) (1996) 407–427.

    Article  MathSciNet  ADS  Google Scholar 

  22. Abramovitch, M. and Stegun, L.A., Handbook of Mathematical Tables. National Bureau of Standards, Washington, DC (1970).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maury, C., Filippi, P.J. & Habault, D. Boundary Integral Equations Method for the Analysis of Acoustic Scattering from Line-2 Elastic Targets. Flow, Turbulence and Combustion 61, 101–131 (1998). https://doi.org/10.1023/A:1026488802183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026488802183

Navigation