Skip to main content
Log in

Theoretical and Numerical Studies on in vacuo Structural Admittance of an Infinite, Coated Cylindrical Shell

  • CLASSICAL PROBLEMS OF LINEAR ACOUSTICS AND WAVE THEORY
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Studying the interaction of sound with a coated cylindrical shell immersed in water is essential for improving existing underwater target detection and classification algorithms. According to the impedance theory of sound scattering, in vacuo structural admittance describes the relationship between the sonar-induced forces and the resulting vibration on the surface, which can be used to solve the problem of the acoustic scattering and radiation. In this work, we investigate numerically and theoretically the structural admittance of a coated cylindrical shell. Analytical expressions of the structural admittance are derived for different external forces: a plane acoustic wave, a normal point force, and a random noise field. The structural admittance is also numerically evaluated. The results show that the structural admittance is independent of exterior medium and fluid loading. According to the impedance theory of sound scattering, the scattered field of a coated cylindrical shell is calculated by combining the structural-, acoustic-, and internal-admittance matrices. Because of the non-local property of structural surface admittance, we build an algebraic model of a coated object by nonlinear curve fitting and study a local approximation of the structural admittance. We also find that simplifying the large matrices is useful for research on structural vibrations. Thus, this work presents a systematic study of the acoustic scattering characteristics of structural admittance of an infinite, coated cylindrical shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Yu. I. Bobrovnitskii, Acoust. Phys. 52, 513 (2006).

    Article  ADS  Google Scholar 

  2. Yu. I. Bobrovnitskii, J. Sound Vib. 297, 743 (2006).

    Article  ADS  Google Scholar 

  3. C. Langrenne, M. Melon, and A. Garcia, J. Acoust. Soc. Am. 121, 2750 (2007).

    Article  ADS  Google Scholar 

  4. E. G. Williams, Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography (Academic Press, 1999).

    Google Scholar 

  5. M. Zampolli, F. B. Jensen, and A. Tesei, J. Acoust. Soc. Am. 125, 89 (2009).

    Article  ADS  Google Scholar 

  6. Yu. I. Bobrovnitskii, Acoust. Phys. 52, 638 (2006).

    Article  ADS  Google Scholar 

  7. Yu. I. Bobrovnitskii, Acoust. Phys. 53, 535 (2007).

    Article  ADS  Google Scholar 

  8. Yu. I. Bobrovnitskii, K. D. Morozov, and T. M. Tomilina, Acoust. Phys. 56, 127 (2010).

    Article  ADS  Google Scholar 

  9. C. F. Gaumond and T. Yoder, J. Acoust. Soc. Am. 97, 1415 (1995).

    Article  ADS  Google Scholar 

  10. S. T. Rakotonarivo, W. A. Kuperman, and E. G. Williams, J. Acoust. Soc. Am. 134, 4401 (2013).

    Article  ADS  Google Scholar 

  11. S. Rakotonarivo, S. Yildiz, P. Roux, E. G. Williams, and W. A. Kuperman, in Proc. 2nd Int. Conference on Underwater Acoustics (Island of Rhodes, 2014).

  12. E. G. Williams, J. D. Tippmann, S. T. Rakotonarivo, Z. J. Waters, P. Roux, and W. A. Kuperman, J. Acoust. Soc. Am. 142, 103 (2007).

    Article  ADS  Google Scholar 

  13. J. D. Tippmann, S. T. Rakotonarivo, W. Kuperman, Z. J. Waters, P. Roux, and E. G. Williams, in Proc. 22nd Int. Congress on Acoustics, ICA 2016 (Buenos Aires, September 5−9, 2016).

  14. E. Brandão, A. Lenzi, and S. Paul, Acta Acust. Acust. 101, 443 (2015).

    Article  Google Scholar 

  15. J. Y. Chung and D. A. Blaser, J. Acoust. Soc. Am. 68, 907 (1980).

    Article  ADS  Google Scholar 

  16. J. Y. Chung and D. A. Blaser, J. Acoust. Soc. Am. 68, 914 (1980).

    Article  ADS  Google Scholar 

  17. E. J. Skudrzyk, J. Acoust. Soc. Am. 74, S109 (1983).

    Article  ADS  Google Scholar 

  18. E. Brandão, P. Mareze, A. Lenzi, and A. R. da Silva, J. Acoust. Soc. Am. 133, 2722 (2013).

    Article  ADS  Google Scholar 

  19. B. Faverjon and C. Soize, J. Sound Vib. 276, 571 (2004).

  20. B. Faverjon and C. Soize, J. Sound Vib. 276, 593 (2004).

  21. M. Yang, T. Wang, Z. Fan, and Z. Jin, in Proc. 16th AIAA/CEAS Aeroacoustics Conference (Stockholm, 2010), p. 3907.

  22. M. C. Junger and D. Feit, Sound, Structures, and their Interaction (MIT Press, Cambridge, 1986).

    MATH  Google Scholar 

  23. R. D. Doolittle and H. Überall, J. Acoust. Soc. Am. 39, 272 (1996).

    Article  Google Scholar 

  24. W. A. Kuperman and F. Ingenito, J. Acoust. Soc. Am. 67, 1988 (1980).

    Article  ADS  Google Scholar 

  25. W. Tang, S. He, and J. Fan, Acta Acust. (Beijing) 30, 289 (2005).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the National Basic Research Program of China (973 Program), project no. 613247.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fulin Zhou, Bin Wang, Jun Fan or Zilong Peng.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fulin Zhou, Wang, B., Fan, J. et al. Theoretical and Numerical Studies on in vacuo Structural Admittance of an Infinite, Coated Cylindrical Shell. Acoust. Phys. 65, 14–22 (2019). https://doi.org/10.1134/S1063771019010184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771019010184

Keywords:

Navigation