Skip to main content
Log in

Magnetic Properties of Rare Earth and Transition Metal Phosphomolybdates

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Recent measurements of the magnetic susceptibility and magnetic ordering of the rare earth phosphomolybdates, RPO4(MoO3)12·30H2O (or RPMO) are described. R denotes the trivalent ions Ce, Nd, Gd, Tb, Dy, Ho, Er, Tm, or Yb. Some data on iron and chromium phosphomolybdate is also included. The paramagnetic susceptibility data from 300 K to 0.1 K of the RPMO salts, with space group Fd¯3 (T4 h), is analyzed in terms of a crystal field Hamiltonian that assumes the magnetic ions have 23 (T) site symmetry, and estimates of the crystal field parameters are obtained. TbPMO and HoPMO have magnetic ground states due to mixing caused by the nuclear hyperfine interaction, and the data of HoPMO, in particular, can be fit rather well once the hyperfine interaction is included in the curves. Magnetic ordering was observed in FePMO, GdPMO, DyPMO, ErPMO and YbPMO. Exchange may be important in FePMO, but GdPMO, DyPMO, ErPMO and YbPMO are likely dipolar magnets. The susceptibilities of FePMO, DyPMO, ErPMO and YbPMO below T c are smaller than that predicted for a classical dipolar ground state. A diamond structure spin wave calculation shows qualitative agreement with these susceptibilities but not the quantitative agreement reported earlier. The susceptibility of GdPMO is higher than that predicted for a classical dipolar antiferromagnet, possibly indicating ferromagnetism. History dependence is observed in the susceptibility below the ordering features of GdPMO, DyPMO, and ErPMO, possibly indicating magnetic frustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. L. Hoard, Z. Krist. 84, 217 (1932).

    Google Scholar 

  2. L. R. Morss, M. Seigal, L. Stenger, and N. Edelstein, Inorg. Chem. 9, 1771 (1970).

    Google Scholar 

  3. E. Bucher, H. J. Guggenheim, K. Andres, G. W. Hull, and A. S. Cooper, Phys. Rev. B 10, 2945 (1974).

    Google Scholar 

  4. D. G. Karraker, J. Chem. Phys. 55, 1084 (1971).

    Google Scholar 

  5. M. V. Hoehn and D. G. Karraker, J. Chem. Phys. 60, 393 (1974).

    Google Scholar 

  6. B. D. Dunlap and G. K. Shenoy, Phys. Rev. B 12, 2716 (1975).

    Google Scholar 

  7. M. R. Roser and L. R. Corruccini, Phys. Rev. B 41, 2359 (1990).

    Google Scholar 

  8. M. R. Roser and L. R. Corruccini, Phys. Rev. Lett. 65, 1064 (1990).

    Google Scholar 

  9. M. R. Roser, Jingchun Xu, Steven J. White, and L. R. Corruccini, Phys. Rev. B 45, 12337 (1992).

    Google Scholar 

  10. Steven J. White, M. R. Roser, Jingchun Xu, J. T. Van der Noordaa, and L. R. Corruccini, Phys. Rev. Lett. 71, 3553 (1993).

    Google Scholar 

  11. L. R. Corruccini, J. T. Van der Noordaa, S. J. White, and H. Hopé, Physica B 240, 43 (1997).

    Google Scholar 

  12. J. T. Van der Noordaa, Magnetic Susceptibilities of the Rare Earth Phosphomolybdates, Ph.D. Dissertation, University of California, Davis (1999).

    Google Scholar 

  13. S. L. Altmann and P. Hertzig, Point Group Theory Tables, Oxford Science Publications, Clarendon Press, Oxford (1994).

    Google Scholar 

  14. B 04 , B 06 , and B 26 are defined as in B. G. Wybourne, Spectroscopic Properties of Rare Earths, John Wiley, Inc., New York (1965).

    Google Scholar 

  15. J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities, Clarendon Press, Oxford (1932).

    Google Scholar 

  16. T. Murao, J. Phys. Soc. Japan 31(3), 683 (1971); K. Andres, Phys. Rev. B 7(9), 4295 (1973); R. Bidaux, A. Gavignet-Tillard, and J. Hammann, J. de Physique 34, 19 (1973); A. Gavignet-Tillard, J. Hammann, and L. de Seze, J. de Physique 34, 27 (1973); J. Ham-mann and P. Manneville, J. de Physique 34, 615 (1973); Ref. 3; J. Hammann and M. Ocio, Physica 86–88B, 1153–1155 (1977); J. Hammann and M. Ocio, J. of Magnetism and Magnetic Materials 15–18, 39–40 (1980); S. Simizu and S. A. Friedberg, Physica 108B, 1099–1100 (1981); S. Simizu, G. H. Bellesis, and S. A. Friedberg, J. Applied Physics 55, no. 6, pt. 2B), 2333–5 (1984); G. H. Bellesis, S. Simizu, and S. A. Friedberg, J. Appl. Phys. 61(8), 3283 (1987); G. H. Bellesis, S. Simizu, and S. A. Friedberg, Proc. 18th Int. Conf. on Low Temperature Physics, Kyoto, 1987, Jap. J. of Appl. Phys. 26, Supplement 26-3, BD3 (1987); G. H. Bellesis, S. Simizu, and S. A. Friedberg, J. Appl. Phys. 67(9), 5580 (1990).

    Google Scholar 

  17. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Dover Publications, Inc., New York (1986).

    Google Scholar 

  18. S. J. Joshua, Symmetry Principles and Magnetic Symmetry in Solid State Physics, Adam Hilger (1991).

  19. J. M. Luttinger and L. Tisza,, Phys. Rev. 70, 954 (1946) and 72, 257E (1947).

    Google Scholar 

  20. C. L. Henley, Phys. Rev. Lett. 73, 2788 (1994).

    Google Scholar 

  21. P. Schiffer and A. P. Ramirez, Comments Condens. Mater. Phys. 18, 21 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van der Noordaa, J.T., Corruccini, L.R. Magnetic Properties of Rare Earth and Transition Metal Phosphomolybdates. Journal of Low Temperature Physics 121, 81–103 (2000). https://doi.org/10.1023/A:1026456526057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026456526057

Keywords

Navigation