Fibrous metal–carbon composite structures as gas diffusion electrodes for use in alkaline electrolyte

Abstract

The fabrication of novel fibre composite electrode structures and the performance assessments for oxygen reduction in alkaline electrolyte is reported. An array of 2μm diameter activated carbon fibres interlocked within a network of 2μm sinter-bonded metal fibres to form the composite structure was used. The resulting electrode structure is stable, highly conductive and can maintain void fraction exceeding 95%. Electrode physical properties including thickness, macroporosity, volume and mass fractions of constituent carbon and metal fibres have been controlled, characterized, and related to the electrode polarization in a KOH half cell. Comparisons have been made with a commercial Teflon-bonded gas diffusion electrode (GDE). It has been demonstrated that this novel method allows reproducible and low-cost fabrication of GDEs with the optimal balance between macropores for gas access, micropores for liquid access, and conductive paths for electron access.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    A. J. Appleby and F. R. Foulkes, `Fuel Cell Handbook', Van Nostrand Reinhold, New York (1989) p. 357.

    Google Scholar 

  2. [2]

    E. L. Littauer and J. F. Cooper, in `Handbook of Batteries and Fuel Cells' (edited by D. Linden), McGraw-Hill, New York (1984) pp. 30–1.

    Google Scholar 

  3. [3]

    M. R. Tarasevich and E. I. Khrushcheva, in `Modern Aspects of Electrochemistry' (edited by B. E. Conway, J. O'M Bockris and R. E. White), No. 19, Plenum Press, New York (1989) p. 295.

    Google Scholar 

  4. [4]

    A. J. Bard and L. R. Faulkner, `Electrochemical Methods; Fundamentals and Applications', John Wiley & Sons, New York (1980) Chap. 3.

    Google Scholar 

  5. [5]

    K. Kinoshita, `Carbon: Electrochemical and Physicochemical Properties', John Wiley & Sons, New York (1988) Chap. 5.

    Google Scholar 

  6. [6]

    D. A. Kohler, J. N. Zabasajja, A. Krishnagopalan and B. J. Tatarchuk, J. Electrochem. Soc. 137 (1990) 136.

    Google Scholar 

  7. [7]

    D. A. Kohler, J. N. Zabasajja, F. Rose and B. J. Tatarchuk, ibid. 137 (1990) 1750.

    Google Scholar 

  8. [8]

    B. J. Tatarchuk, M. F. Rose, A. Krishnagopolan and D. A. Kohler, US Patent 5 080 963 (1992).

  9. [9]

    B. J. Tatarchuk, US Patent 5 096 663 (1992).

  10. [10]

    B. J. Tatarchuk, M. F. Rose and A. Krishnagopolan, US Patent 5 102 745 (1992).

  11. [11]

    J. O'M. Bockris and S. Srinivasan, `Fuel Cells: Their Electrochemistry', McGraw-Hill, New York (1969) Chap. 8.

    Google Scholar 

  12. [12]

    S. F. Bender and J. W. Cretzmeyer, in `Handbook of Batteries and Fuel Cells', op. cit., pp. 7–10.

  13. [13]

    R. J. Brodd, in `Handbook of Batteries and Fuel Cells', op. cit., pp. 17–20.

  14. [14]

    S. Ahn, PhD dissertation, Auburn University, DCN.A452 (1992).

  15. [15]

    S. Ahn and B. J. Tatarchuk, J. Electrochem. Soc. 142 (1995) 4169.

    Google Scholar 

  16. [16]

    K. J. Vetter, `Electrochemical Kinetics', Academic Press, New York (1967).

    Google Scholar 

  17. [17]

    Y. Rho, O. Velev, S. Srinivasan and Y. Kho, J. Electrochem. Soc. 141 (1994) 2084.

    Google Scholar 

  18. [18]

    R. Holze and W. Vielstich, Electrochim. Acta 29 (1984) 607.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

AHN , S., TATARCHUK , B.J. Fibrous metal–carbon composite structures as gas diffusion electrodes for use in alkaline electrolyte. Journal of Applied Electrochemistry 27, 9–17 (1997). https://doi.org/10.1023/A:1026454513293

Download citation

Keywords

  • Activate Carbon
  • Carbon Fibre
  • Composite Structure
  • Void Fraction
  • Composite Electrode