Skip to main content

Advertisement

Log in

In-Situ Formation of Carbon Nanofiber Hybrid Architectures for Functional Devices

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Carbon nanomaterials are consistently providing new excitement over their properties and potential applications, but many of these material have yet to fully live up to their expectations commercially. The barrier to adoption often exists as a result of complex processing, fragility of the as-produced material, or difficulty scaling beyond laboratory quantities. This work provides a new approach for utilizing fibrous carbon nanomaterials to advance the technology toward new applications and industrial utility. This is accomplished by creating tailored device architectures through in-situ integration of activated carbon powder using carbon nanofiber deposition. The resulting hybrid materials and components can serve in diverse applications, with each instance able to be fine-tuned through a combination of processing parameters. The applications of such materials are anticipated to directly serve current carbon-based technology in filtration, energy storage and delivery, and thermal management, but the concepts are not limited to current carbon applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl and R.E. Smalley: C 60: buckminsterfullerene, Nature 318, 162 (1985).

    Article  CAS  Google Scholar 

  2. S. Iijima: Helical microtubules of graphitic carbon, Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov: Electric field effect in atomically thin carbon films, Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  4. L. Dai, D.W. Chang, J.B. Baek and W. Lu: Carbon nanomaterials for advanced energy conversion and storage, Small 8, 1130 (2012).

    Article  CAS  Google Scholar 

  5. S. Marchesan, M. Melchionna and M. Prato: Carbon nanostructures for nanomedicine: Opportunities and challenges, Fullerenes, Nanotubes, Carbon Nanostruct. 22, 190 (2014).

    Article  CAS  Google Scholar 

  6. M.A. Atwater, A.K. Mousavi, J. Phillips and Z.C. Leseman: Direct Synthesis of Nanoscale Carbon Nonwovens by Catalytic Deposition, Carbon 57, 363 (2013).

    Article  CAS  Google Scholar 

  7. K.P. de Jong and J.W. Geus: Carbon nanofiber: synthesis and applications, Catal. Rev. 42, 481 (2000).

    Article  Google Scholar 

  8. M.A. Atwater, J. Phillips and Z.C. Leseman: Formation of carbon nanofibers and thin films catalyzed by palladium in ethylene-hydrogen mixtures, J Phys Chem C 114, 5804 (2010).

    Article  CAS  Google Scholar 

  9. W. Lu, T. He, B. Xu, X. He, H. Adidharma, M. Radosz, K. Gasem and M. Fan: Progress in catalytic synthesis of advanced carbon nanofibers, J. Mater. Chem. A 5, 13863 (2017).

    Article  CAS  Google Scholar 

  10. R.E. Smalley, M.S. Dresselhaus, G. Dresselhaus and P. Avouris: Carbon nanotubes: synthesis, structure, properties, and applications, (Springer Science & Business Media 2003).

  11. N.M. Rodriguez, A. Chambers and R.T.K. Baker: Catalytic engineering of carbon nanostructures, Langmuir 11, 3862 (1995).

    Article  CAS  Google Scholar 

  12. J.A. Mapkar, A. Belashi, L.M. Barhan and M.R. Coleman: Formation of high loading flexible carbon nanofiber network composites, Compos. Sci. Technol. 74, 1 (2013).

    Article  Google Scholar 

  13. O. Waldmann, A. Persaud, R. Kapadia, K. Takei, F.I. Allen, A. Javey and T. Schenkel: Effects of palladium coating on field-emission properties of carbon nanofibers in a hydrogen plasma, Thin Solid Films 534, 488 (2013).

    Article  CAS  Google Scholar 

  14. Z. Liu, D. Fu, F. Liu, G. Han, C. Liu, Y. Chang, Y. Xiao, M. Li and S. Li: Mesoporous carbon nanofibers with large cage-like pores activated by tin dioxide and their use in supercapacitor and catalyst support, Carbon 70, 295 (2014).

    Article  CAS  Google Scholar 

  15. M.A. Atwater, R.J. Welsh, D.S. Edwards, L.N. Guevara, C.B. Nelson and B.T. Stone: Multiscale design of nanofibrous carbon aerogels: Synthesis, properties and comparisons with other low-density carbon materials, Carbon 124, 588 (2017).

    Article  CAS  Google Scholar 

  16. X. Li, Y. Tang, J. Song, W. Yang, M. Wang, C. Zhu, W. Zhao, J. Zheng and Y. Lin: Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor, Carbon 129, 236 (2018).

    Article  CAS  Google Scholar 

  17. Z. Jiao, Q. Wu and J. Qiu: Preparation and electrochemical performance of hollow activated carbon fiber — Carbon nanotubes three-dimensional self-supported electrode for supercapacitor, Mater. Des. 154, 239 (2018).

    Article  CAS  Google Scholar 

  18. T. Temirgaliyeva, S. Kuzuhara, S. Noda, M. Nazhipkyzy, A. Kerimkulova, B. Lesbayev, N. Prikhodko and Z. Mansurov: Self-Supporting Hybrid Supercapacitor Electrodes Based on Carbon Nanotube and Activated Carbons, Eurasian Chem.-Technol. J. 20, 169 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knauss, S.J., Brennan, S.A. & Atwater, M.A. In-Situ Formation of Carbon Nanofiber Hybrid Architectures for Functional Devices. MRS Advances 4, 1869–1875 (2019). https://doi.org/10.1557/adv.2019.312

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.312

Navigation