Skip to main content
Log in

Entropy Production and Transports in a Conservative Multibaker Map with Energy

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For a previously introduced conservative multibaker map with energy, the Gaspard–Gilbert–Dorfman entropy production of the stationary state induced by the flux boundary condition is calculated and the entropy production is shown (i) to be nonnegative, (ii) to vanish in the fine-grained limit for finite chains, (iii) to take the phenomenologically expected value in the middle of the chain and to deviate from it near the boundaries, and (iv) to reduce to the phenomenological expression in the scaling limit where the lattice site nZ and time tZ are scaled respectively as n=L ξ X and t=L τ T and the limits of L ξ→+∞ and L τ→+∞ are taken while keeping the diffusion coefficient D=lL τ/L 2 ξ constant, l being the transition rate of the model. The mass and heat transports are also studied in the scaling limit under an additional assumption that the edges of the chain are in equilibrium with different temperatures. In the linear heat transport regime, Fourier's law of heat conduction and the thermodynamic expression of the associated entropy production are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. Prigogine, Nonequilibrium Statistical Mechanics (Wiley, New York, 1962); G. Nicolis and I. Prigogine, Self-organization in nonequilibrium systems (Wiley, New York, 1977); I. Prigogine, From being to becoming (Freeman, San Francisco, 1980); G. Nicolis, Intro-duction to Nonlinear Science (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  2. J. R. Dorfman, An Introduction to Chaos in Non-Equilibrium Statistical Mechanics (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  3. P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  4. Chaos and Irreversibility, focus issue of Chaos 8 (1998).

  5. N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai, Phys. Rev. Lett. 70:2209 (1993); Commun. Math. Phys. 154:569 (1993); D. Ruelle, J. Stat. Phys. 85:1 (1996); 86:935 (1997); 95:393 (1999); W. Breymann, T. Tel, and J. Vollmer, Phys. Rev. Lett. 77:2945 (1996); G. Nicolis and D. Daems, J. Phys. Chem. 100:19187 (1996); Chaos 8:311 (1998); E. C. G. Cohen and L. Rondoni, Chaos 8:357 (1998).

    Google Scholar 

  6. P. Gaspard, Physica 240A:54 (1997); J. Stat. Phys. 88:1215 (1997).

    Google Scholar 

  7. J. Vollmer, T. Tél and W. Breymann, Phys. Rev. Lett. 79:2759 (1997); W. Breymann, T. Tel and J. Vollmer, Chaos 8:396 (1998); J. Vollmer, T. Tel and W. Breymann, Phys. Rev. E 58:1672 (1998).

    Google Scholar 

  8. T. Gilbert and J. R. Dorfman, J. Stat. Phys. 96:225 (1999).

    Google Scholar 

  9. S. Tasaki and P. Gaspard, Theor. Chem. Accounts 102:385 (1999).

    Google Scholar 

  10. L. Mátyás, T. Tél and J. Vollmer, Thermodynamic Cross-Effects from Dynamical Systems, chao-dyn/9912028; L. Mátyás, T. Tél and J. Vollmer, A MultiBaker Map for Thermodynamic Cross-Effects in Dynamical Systems, chao-dyn/9912034; J. Vollmer, T. Tél and L. Mátyás, Modelling thermostating, entropy currents and cross-effects by dynamical systems, submitted to J. Stat. Phys.; T. Tél and J. Vollmer, Entropy Balance, Multibaker Maps, and the Dynamics of the Lorentz Gas, to appear in Hard ball systems and the Lorentz gas, D. Szasz, ed. (Springer, 2000).

  11. L. Rondoni and E. C. G. Cohen, Gibbs Entropy and Irreversible Thermodynamics, cond-mat/9908367.

  12. P. Gaspard, J. Stat. Phys. 68:673 (1992); S. Tasaki and P. Gaspard, J. Stat. Phys. 81:935 (1995).

    Google Scholar 

  13. T. Tél, J. Vollmer and W. Breymann, Europhys. Lett. 35:659 (1996); T. Tél, J. Vollmer and W. Breymann, A Multibaker Model of Transport in Driven Systems, preprint (Eötvös University, 1997).

    Google Scholar 

  14. G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74:2694 (1995); J. Stat. Phys. 80:931 (1995); E. G. D. Cohen, Physica 321A:293 (1995).

    Google Scholar 

  15. L. A. Bunimovich and Ya. G. Sinai, Commun. Math. Phys. 77:247 (1980); ibid. 78:479 (1981).

    Google Scholar 

  16. T. Tél, Transient chaos, in Directions in Chaos, Vol. 3, Hao Bai-Lin, ed. (World Scientific,1990); E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993).

  17. S. R. de Groot and P. Mazur, Non-equilibrium Thermodynamics (Dover, New York, 1984).

    Google Scholar 

  18. S. Tasaki, T. Gilbert and J. R. Dorfman, Chaos 8:424 (1998).

    Google Scholar 

  19. H. H. Hasegawa and W. Saphir, Phys. Rev. A 46:7401 (1992); I. Antoniou and S. Tasaki, Physica A 190:303 (1992); P. Gaspard, Chaos 3:427 (1993); H. H. Hasegawa and D. J. Driebe, Phys. Rev. E 50:1781 (1994); S. Tasaki and P. Gaspard, Bussei Kenkyu (Kyoto) 66:21 (1996); R. F. Fox, Chaos 7:254 (1997).

    Google Scholar 

  20. B. Misra, I. Prigogine and M. Courbage, Physica A 98:1 (1979); B. Misra and I. Prigogine, Prog. Theor. Phys. Suppl. 69:101 (1980); Lett. Math. Phys. 7:421 (1983).

    Google Scholar 

  21. G. Nicolis and C. Nicolis, Phys. Rev. A 38:427 (1988); M. Courbage and G. Nicolis, Europhys. Lett. 11:1 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tasaki, S., Gaspard, P. Entropy Production and Transports in a Conservative Multibaker Map with Energy. Journal of Statistical Physics 101, 125–144 (2000). https://doi.org/10.1023/A:1026443028452

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026443028452

Navigation