Skip to main content
Log in

the effect of phosphate on the transformation of ferrihydrite into crystalline products in alkaline media

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The presence of phosphate retards the transformation of ferrihydrite into crystalline products. Increasing phosphate from 0 to 1 mole % results in an order of magnitude decrease in the rate of transformation of ferrihydrite at pH 12. Levels of phosphate of ∼1 mol % suppress the formation of goethite (α-FeO(OH)) and result in the formation of a product consisting of η-Fe2O3. Higher levels of phosphate result in the ferrihydrite remaining amorphous, even after several hundred hours. Phosphate prevents formation of goethite by hindering the dissolution of ferrihydrite rather than by interfering with nucleation and growth of goethite in solution. The transformation rate of pure ferrihydrite is also strongly inhibited in the presence of dissolved phosphate. This is due to surface complexation. The transformation rate was measured at temperatures of 60 °C and 70 °C. The rate of transformation was found to be described by either (i) a solid-state reaction equation for powdered compacts or (ii) a zero-order reaction controlled by desorption. The transformation of the ferrihydrite matrix was accompanied by the loss of the phosphate trace component. X-ray diffraction indicates that no solid solution involving phosphate substitution into η-Fe2O3 is formed. Transmission electron microphotographs of the original precipitates containing phosphate confirm the presence of the phosphate and demonstrate its involvement in linking together extremely small particles of ferrihydrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, W. A. and Kassim, J. K.: 1984, J. Soil Sci. 35, 117.

    Google Scholar 

  • Acheson, R. J. and Galwey, A. K.: 1968, J. Chem. Soc. A 942.

  • Broadbent, D., Dollimore, D. and Dollimore, J.: 1966, J. Chem. Soc. A 1491.

  • Combes, J. M., Manceau, A. and Calas, G.: 1990, Geochim. Cosmochim. Acta 454, 1083-1091.

    Google Scholar 

  • Cornell, R. M.: 1987, Düng Bodenkd. 150, 304.

    Google Scholar 

  • Cornell, R. M.: 1988, Clay Miner, 23, 329.

    Google Scholar 

  • Cornell, R. M., Giovanoli, R. and Schneider, W.: 1990, Clays and Clay Minerals 38, No. 1, 21.

    Google Scholar 

  • Cornell, R. M. and Giovanoli, R.: 1988, Polyhedron 7, 385.

    Google Scholar 

  • Cornell, R. M. and Schneider, W.: 1989, Polyhedron 8, 149.

    Google Scholar 

  • Cornell, R. M. and Schwertmann, U.: 1979, Clays and Clay Minerals 27, 402.

    Google Scholar 

  • Duffus, J. H.: 1980, Environmental Toxicology. Resource and Environmental Sciences Series. Edward Arnold, London.

    Google Scholar 

  • Eggleton, R. A. and Fitzpatrick, R. W.: 1988, Clays and Clay Minerals 36, 111.

    Google Scholar 

  • Feitknecht, W. and Michaelis, W.: 1962, Helv. Chim. Acta 45, 212.

    Google Scholar 

  • Fischer, W. R. and Schwertmann, U.: 1975, Clays and Clay Minerals 23, 33.

    Google Scholar 

  • Franklin, M. L. and Flanagan, T. B.: 1972, J. Chem. Soc., Dalton Trans. 192.

  • Golterman, H. L.: 1976, 'Zonation of Mineralization in Stratifying Lakes', in J. M. Anderson and A. MacFadyen (eds.), The Role of Terrestrial and Aquatic Organisms in Decomposition Processes. Blackwell Scientific Publications, Oxford, pp. 3-22.

    Google Scholar 

  • He, Q. H., Leppard, G. G., Paige, C. R. and Snodgrass, W. J.: 1996, 'Transmission Electron Microscopy of a Phosphate Effect on the Colloid Structure of Iron Hydroxide', Water Research, Vol. 30, No. 6, pp. 1345-1352.

    Google Scholar 

  • Hulbert, S. F.: 1969, J. Br. Ceram. Soc. 6, 11.

    Google Scholar 

  • Jackson, T. A. and Keller, W. D.: 1970, Amer. J. Sci. 269, 446.

    Google Scholar 

  • Johnston J. H. and Lewis, D. G.: 1983, Geochim. Cosmochim. Acta 47, 1823.

    Google Scholar 

  • Jones, K. A., Acheson, R. J., Wheeler, B. R. and Galwey, A. K.: 1968, 'Thermal Decomposition of Nickel Malonate', Trans. Faraday Soc. 64.

  • Jones, L. F., Dollimore, D. and Nicklin, T.: 1975, Thermochimica Acta 13, 240.

    Google Scholar 

  • Leckie, J. O., Merrill, D. T. and Chow, W.: 1985, 'Trace Element Removal from Power Plant Wastestreams by Adsorption/Coprecipitation with Amorphous Iron Oxyhydroxide', A. I. Ch. E. Symposium series 243, 81, pp. 28-42.

  • Lewis and Schwertmann, U.: 1979, Clay Miner 14, 115.

    Google Scholar 

  • MacKay,: 1960, 'Some Aspects of the Topochemistry of the Iron Oxides and Hydroxides', 4th International Symp. Reactivity of Solids. Amsterdam.

  • Meeter D. A. and Wolfe P. J.: 1965, 'Non-Linear Least Squares (Gaushaus)', Univ. of WI Computing Center.

  • Murphy, P. J., Possner, A. M. and Quirk, J. P.: 1976, J. Coll. Interface Sci. 56, 312.

    Google Scholar 

  • Paige, C. R., Snodgrass, W. J., Nicholson, R. V. and Scharer, J. M.: 1994, Water Poll. Res. J. Canada 29, No. 4, 507.

    Google Scholar 

  • Pierrou, U.: 1976, 'The Global Phosphorus Cycle', in B. H. Svensson and R. Soderlund (eds.), Nitrogen, Phosphorus and Sulfur Global Cycles, SCOPE Report 7. Ecological Bulletins, Vol. 22. Stockholm: Swedish Natural Science Research Council, pp. 75-88.

    Google Scholar 

  • Pomeroy, L. R.: 1970, Ann. Rev. Ecol. Syst. 1, 171.

    Google Scholar 

  • Reiners, W. A. and Reiners, N. M.: 1970, J. Ecol. 58, 497.

    Google Scholar 

  • Schwertmann, U., Schulze, D. G. and Murad, E.: 1982, Soil Sci. Soc. A. J. 46, 869.

    Google Scholar 

  • Schwertmann, U. and Taylor, R. M.: 1989, 'Iron Oxides', in J. B. Dixon and S. B. Weed (eds.), Minerals in Soil Environments. Soil Sci. Am., Book Series 1, 379-438.

  • Schwertmann, U. and Fischer, W. R.: 1966, Z. Anorg. Allg. Chem. 346, 137.

    Google Scholar 

  • Schwertmann, U. and Murad, E.: 1983, Clays and Clay Minerals 231, 277.

    Google Scholar 

  • Sherriff, R. A. F. and Galwey, A. K.: 1980, in Bamford, C. H. and Tipper, C. F. H. (eds.), Chemical Kinetics, Volume 22, Reactions in the Solid State, Elsevier Scientific Press, Amsterdam.

    Google Scholar 

  • Sun, T., Paige, C. R. and Snodgrass, W. J.: 1995, 'The Effect of Cadmium on the Transformation of Ferrihydrite into Crystalline Products at pH 8', Water, Air, and Soil Pollut. 93, 307-325.

    Google Scholar 

  • Tipping E., Woof, C. and Cooke, D.: 1981, Geochem. Cosmochim. Acta 45, 1411.

    Google Scholar 

  • Walker, R. F.: 1969, Trans. Faraday Soc. 65, 3324.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paige, C.R., Snodgrass, W.J., Nicholson, R.V. et al. the effect of phosphate on the transformation of ferrihydrite into crystalline products in alkaline media. Water, Air, & Soil Pollution 97, 397–412 (1997). https://doi.org/10.1023/A:1026416426611

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026416426611

Navigation