Skip to main content
Log in

Alternative transcription initiation sites generate two LCA1 Ca2+-ATPase mRNA transcripts in tomato roots

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The tomato LCA1 gene encodes a Ca2+-ATPase and gives rise to two major mRNA transcripts and two distinct protein products of different size in tomato roots. The basis of the transcript size difference was investigated to assess whether the mRNA transcripts encoded distinct protein products. Primer extension and S1 nuclease analysis identified two transcription initiation sites at −72 and −1392 from the start of translation. RNA gel blot analysis of poly(A)+ RNA isolated from phosphate-starved tomato roots using probes designed to domains of the 5′-untranslated region (UTR) or the full-length LCA1 cDNA identified mRNAs of 4.7 and 3.6 kb, corresponding to mRNA originating from transcription initiation sites −1392 and −72, respectively. Screening of a cDNA library derived from phosphate-starved tomato roots yielded three cDNA clones, LCA1A, LCA1B and LCA1C (3.6, 4.5 and 5.1 kb respectively). These cDNAs contain full-length LCA1 mRNA sequence derived from each transcription initiation site, with LCA1C additionally containing an intron of 0.6 kb. Sequence analysis indicated 100% identity between the three size classes of cDNA clones except for the differential 5′-UTR and the unspliced intron. Overall, the results indicate that the two major LCA1 mRNA transcripts are derived by differential transcription initiation and that two of the mRNAs may encode identical protein products, while a third mRNA may correspond to a non-functional truncated protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, K.Y., Madsen, K.M., Tisher, C.C. and Kone, B.C. 1993. Differential expression and cellular distribution of mRNAs encoding a-and b-isoforms of Na+-K+-ATPase in rat kidney. Am. J. Physiol. 265: F792-F801.

    Google Scholar 

  • Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (Eds.). 1990. Current Protocols in Molecular Biology, 8th ed., John Wiley, Boston.

    Google Scholar 

  • Brandl, C.J., DeLeon, S., Martin, D.R. and MacLennan, D.H. 1987. Adult forms of the Ca2CATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J. Biol. Chem. 262: 3768-3774.

    Google Scholar 

  • Brandl, C.J., Green, N.M., Korczak, B. and MacLennan, D.H. 1986. Two Ca2C ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell 44: 597-607.

    Google Scholar 

  • Brandt, P., Neve, R.L., Kammesheidt, A., Rhoads, R.E. and Vanaman, T.C. 1992. Analysis of the tissue-specific distribution of mRNAs encoding the plasma membrane calcium-pumping ATPases and characterization of an alternately spliced form of PMCA4 at the cDNA and genomic levels. J. Biol. Chem. 267: 4376-4385.

    Google Scholar 

  • Brines, M.L. and Robbins, R.J. 1993. Cell-type specific expression of Na+, K+-ATPase catalytic subunits in cultured neurons and glia: evidence for polarized distribution in neurons. Brain Res. 631: 1-11.

    Google Scholar 

  • Briskin, D.P. 1990. Ca2C-translocating ATPase of the plant plasma membrane. Plant Physiol. 94: 397-400.

    Google Scholar 

  • Buckhout, T.J. 1983. ATP-dependent Ca2Ctransport in endoplasmic reticulum isolated from roots of Lepidiium sativum. Planta 159: 84-90.

    Google Scholar 

  • Burk, S.E., Lytton, J., MacLennan, D.H. and Shull, G.E. 1989. cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2C pump. J. Biol. Chem. 264: 18561-18568.

    Google Scholar 

  • Burk, S.E. and Shull, G.E. 1992. Structure of the rat plasma membrane Ca2C-ATPase isoform 3 gene and characterization of alternative splicing and transcription products. J. Biol. Chem. 267: 19683-19690.

    Google Scholar 

  • Bush, D.R. and Sze, H. 1986. Ca2C-transport in tonoplast and endoplasmic reticulum vesicles isolated from cultured carrot cells. Plant Physiol. 80: 549-555.

    Google Scholar 

  • Bush, D.S. 1995. Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol. Plant Mol. Biol. 46: 95-122.

    Google Scholar 

  • Canfield, V.A., Okamoto, C.T., Chow, D., Dorfman, J., Gros, P., Forte, J.G. and Levenson, R. 1990. Cloning of the H, K-ATPase b subunit. J. Biol. Chem. 265: 19878-19884.

    Google Scholar 

  • Chanson, A. 1991. A Ca2C/HCantiport system driven by the tonoplast pyrophosphate-dependent proton pump from maize roots. Plant Physiol. 137: 471-476.

    Google Scholar 

  • Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159.

    Google Scholar 

  • DeWitt, N.D. and Sussman, M.R. 1995. Immunocytological localization of an epitope-tagged plasma membrane proton pump (HC-ATPase) in phloem companion cells. Plant Cell 7: 2053-2067.

    Google Scholar 

  • Drobak, B.K. 1993. Plant phosphoinositides and intracellular signaling. Plant Physiol. 102: 705-709.

    Google Scholar 

  • Escalante, R. and Sastre, L. 1993. Similar alternative splicing events generate two sarcoplasmic or endoplasmic reticulum Ca-ATPase isoforms in the crustacean Artemia franciscana and in vertebrates. J. Biol. Chem. 268: 14090-14095.

    Google Scholar 

  • Escalante, R. and Sastre, L. 1994. Structure of Artemia franciscana sarco/endoplasmic reticulum Ca-ATPase gene. J. Biol. Chem. 269: 13005-13012.

    Google Scholar 

  • Escalante, R. and Sastre, L. 1995. Tissue-specific alternative promoters regulate the expression of the two sarco/endoplasmic reticulum Ca-ATPase isoforms from Artemia franciscana. DNA Cell Biol. 14: 893-900.

    Google Scholar 

  • Evans, D.E., Briars, S.A. and Williams, L.E. 1991. Active calcium transport by plant cell membranes. J. Exp. Bot. 42: 285-303.

    Google Scholar 

  • Evans, R.M. 1988. The steroid and thyroid hormone receptor superfamily. Science 240: 889-895.

    Google Scholar 

  • Feinberg, A.P. and Vogelstein, B. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6-13.

    Google Scholar 

  • Ferrol, N. and Bennett, A.B. 1996. A single gene may encode differentially localized Ca2C-ATPases in plant cells. Plant Cell 8: 1159-1169.

    Google Scholar 

  • Garoff, H. and Ansorge, W. 1981. Improvements of DNA sequencing gels. Anal. Biochem. 115: 450-457.

    Google Scholar 

  • Greeb, J. and Shull, G.E. 1989. Molecular cloning of a third isoform of the calmodulin-sensitive plasma membrane Ca2Ctransporting ATPase that is expressed predominantly in brain and skeletal muscle. J. Biol. Chem. 264: 18569-18576.

    Google Scholar 

  • Harper, J.F., Manney, L. and Sussman, M.R. 1994. The plasma membrane HC-ATPase gene family in Arabidopsis: genomic sequence of AHA10 which is expressed primarily in developing seeds. Mol. Gen. Genet. 244: 572-587.

    Google Scholar 

  • Heidecker, G. and Messing, J. 1986. Structural analysis of plant genes. Annu. Rev. Plant Physiol. 37: 439-466.

    Google Scholar 

  • Herrera, V.M., Cova, T., Sassoon, D. and Ruiz-Opazo, N. 1994. Developmental cell-specific regulation of Na+-K+-ATPase a1-, a2-and a3-isoform gene expression. Am. J. Physiol. 363: C1301-C1312.

    Google Scholar 

  • Houlne, G. and Boutry, M. 1994. Identification of an Arabidopsis thaliana gene encoding a plasma membrane HCATPase whose expression is restricted to anther tissues. Plant J. 5: 311-317.

    Google Scholar 

  • Hundal, H.S., Marette, A., Mitsumoto, A., Ramlal, T., Bolstein, R. and Klip, A. 1992. Insulin induces translocation of the a2 amd b1 subunits of the NaK-ATPase from intracellular compartments to the plasma membrane in mammalian skeletal muscle. J. Biol. Chem. 263: 8162-8167.

    Google Scholar 

  • Knight, M.R., Campbell, A.K., Smith, S.M. and Trewavas, A.J. 1991. Transgenic plant aequorin reports the effect of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352: 524-526.

    Google Scholar 

  • Korczak, B., Zaran-Herzberg, A., Brandl, C.J., Ingles, C.J., Green, N.M., MacLennan, D.H. 1988. Structure of the rabbit fasttwitch skeletal muscle Ca-ATPase gene. J. Biol. Chem. 263: 4813-4819.

    Google Scholar 

  • Lew, R.R., Briskin, D.P. and Wyse, R.E. 1986. Ca2C uptake by endoplasmic reticulum fron Zucchini hypocotyls. Plant Physiol. 82: 47-53.

    Google Scholar 

  • Lingrel, J.B. 1992. Na, K-ATPase: Isoform structure, function, and expression. Bioenerget. Biomembr. 24: 263-270.

    Google Scholar 

  • Lynch, J. and Lauchli, A. 1988. Salinity affects intracellular calcium in corn root protoplasts. Plant Physiol. 87: 351-356.

    Google Scholar 

  • Lytton, J. and MacLennan, D.H. 1988. Molecular cloning of cDNAs from human kidney coding for two alternatively spliced products of the cardiac Ca2C-ATPase gene. J. Biol. Chem. 263: 15024-15031.

    Google Scholar 

  • Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Minorsky, P.V. 1985. A heuristic model of chilling injury in plants: A role for calcium as the primary physiological transducer of injury. Plant Cell Environ. 8: 75-94.

    Google Scholar 

  • Muchhal, U.S., Liu, C. and Raghothama, K.G. 1997. Ca2C-ATPase is expressed differentially in phosphate-starved roots of tomato. Physiol. Plant. 101: 540-544.

    Google Scholar 

  • Payvar, F. and Schimke, R.T. 1979. Methylmercury hydroxide enhancement of translation and transcription of ovalbumin and conalbumin mRNA's. J. Biol. Chem. 254: 7636-7642.

    Google Scholar 

  • Perez-Prat, E., Narasimhan, M.L., Binzel, M.L., Botella, M.A., Chen, Z., Valpuesta, V., Bressan, R.A. and Hasegawa, P.M. 1992. Induction of a putative Ca2C-ATPase mRNA in NaCl-adapted cells. Plant Physiol. 100: 1471-1478.

    Google Scholar 

  • Pooviah, B.W. and Reddy, A.S.N. 1993. Calcium and signal transduction in plants. Crit. Rev. Plant Sci. 12: 185-211.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467.

    Google Scholar 

  • Strehler, E.E., Strehler-Page, M.-A., Vogel, G. and Carafoli, R. 1989. mRNAs for plasma membrane calcium pump isoforms differing in their regulatory domain are generated by alternative splicing that involves two internal donor sites in a single exon. Proc. Natl. Acad. Sci. USA 86: 6908-6912.

    Google Scholar 

  • Sweadner, K.J. 1985. Enzymatic properties of separated isozymes of the Na, K-ATPase. J. Biol. Chem. 260: 11508-11513.

    Google Scholar 

  • Trewavas, A. and Gilroy, S. 1991. Signal transduction in plant cells. Trends Genet. 7: 356-361.

    Google Scholar 

  • Verboomen, H., Wuytack, F., Van Den Bosch, L., Mertens, L. and Casteels, R. 1994. The functional importance of the extreme C-terminal tail in the gene 2 organellar Ca2C-transport ATPase (SERCA2a/b). Biochemistry 303: 979-984.

    Google Scholar 

  • Watts, A.G., Sanchez-Watts, G., Emanuel, J.R. and Levenson, R. 1991. Cell-specific expression of mRNAs encoding Na+,K+ATPase a and b-subunit isoforms within the rat central nervous system. Proc. Natl. Acad. Sci. USA 88: 7425-7429.

    Google Scholar 

  • Wimmers, L.E., Ewing, N.N. and Bennett, A.B. 1992. Higher plant Ca2C-ATPase: primary structure and regulation of mRNA abundance by salt. Proc. Natl. Acad. Sci. USA 89: 9205-9209.

    Google Scholar 

  • Wuytack, F., Papp, B., Verboomen, H., Raeymaekers, L., Dode, L., Bobe, R., Enouf, J., Bokkala, S., Authi, K.S. and Casteels, R. 1994. A sarcoendoplasmic reticulum Ca2C-ATPase 3-type Ca2C pump is expressed in platelets, in lymphoid cells and in mast cells. J. Biol. Chem. 269: 1410-1416.

    Google Scholar 

  • Zarain-Herzberg, A., Maclennan, D.H., Periasamy, M. 1990. Characterization of rabbit cardiac sarco(endo)plasmic reticulum Ca-ATPase gene. J. Biol. Chem. 265: 4670-4677.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarro-Avino, J.P., Hentzen, A.E. & Bennett, A.B. Alternative transcription initiation sites generate two LCA1 Ca2+-ATPase mRNA transcripts in tomato roots. Plant Mol Biol 40, 133–140 (1999). https://doi.org/10.1023/A:1026410414091

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026410414091

Navigation