Skip to main content
Log in

The molecular cloning and functional characterization of ChNAC1, a NAC transcription factor in Cerasus humilis

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plant-specific NAM, ATAF, and CUC (NAC) transcription factors (TFs) play clear roles in plant development and abiotic stress responses. Chinese dwarf cherry (Cerasus humilis) is an economically important shrub, that has strong resistance to drought. In this study, we isolated and functionally characterized a novel NAC TF from C. humilis. The ChNAC1 ORF contained 894 nucleotides, encoding 297 amino acid residues. ChNAC1 amino acid sequences had the highest similarity with homologous petunia (Petunia hybrida) and tomato (Solanum lycopersicum) NAM proteins. The ChNAC1 transcripts were most abundant in the leaves of seedlings and significantly up-regulated by drought stress. The nuclear localization and transcriptional activity of the C-terminal domain further confirmed that ChNAC1 functions as a TF. Yeast two-hybrid results showed that ChNAC1 can homodimerize in yeast cells. Next, we transformed ChNAC1 into wild-type Arabidopsis thaliana and found that the ectopic expression of ChNAC1 increased chlorophyll, water, proline, and protein contents as well as higher peroxidase (POD) and superoxide dismutase (SOD) activities while decreasing electrolyte conductivity and reactive oxygen species (ROS) contents compared to wild-type and mutant lines. Further, overexpression of ChNAC1 positively regulated ABA-responsive genes under drought stress and increased ABA sensitivity during root growth. Collectively, these results demonstrate the key role of ChNAC1 in drought stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

WT:

Wild type

OX:

Overexpression

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcription PCR

qRT-PCR:

Quantitative real-time PCR

RW3:

Rewater 3 days

GFP:

Green fluorescent protein

His:

Histidine

Trp:

Tryptophan

Leu:

Leucine

ABA:

Abscisic acid

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9(10):1859–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    CAS  Google Scholar 

  • Chau CF, Wu SH (2006) The development of regulations of Chinese herbal medicines for both medicinal and food uses. Trends Food Sci Technol 17(6):313–323

    CAS  Google Scholar 

  • Cong J, Li KQ, Xu XY, Zhang HP, Chen HX, Chen YH, Hao J, Wang Y, Huang XS, Zhang SL (2017) A novel NAC transcription factor, PbeNAC1, of Pyrus betulifolia confers cold and drought tolerance via interacting with PbeDREBs and activating the expression of stress-responsive genes. Front Plant Sci 8:1049

    Google Scholar 

  • Du JJ, Yang H, Chi J (1993) A preliminary study of selected strains of the Chinese dwarf cherry tree. China Fruits 3:23–24

    Google Scholar 

  • Duan M, Zhang R, Zhu F, Zhang Z, Guo L, Wen J, Dong J, Wang T (2017) A lipid-anchored NAC transcription factor is translocated into the nucleus and activates Glyoxalase I expression during drought stress. Plant Cell 29(7):1748–1772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst HA, Olsen AN, Larsen S, Lo Leggio L (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5(3):297–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Zhu L, Xu L, Guo W, Zhang X (2016) GhATAF1, a NAC transcription factor, confers abiotic and biotic stress responses by regulating phytohormonal signaling networks. Plant Cell Rep 35(10):2167–2179

    CAS  PubMed  Google Scholar 

  • He L, Wu Y, Zhao Q, Wang B, Liu Q, Zhang L (2018) Chrysanthemum DgWRKY2 gene enhances tolerance to salt stress in transgenic Chrysanthemum. Int J Mol Sci 19(7):2062

    PubMed Central  Google Scholar 

  • Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, O’Shea C, Skriver K (2010) The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochem J 426(2):183–196

    CAS  PubMed  Google Scholar 

  • Jia DF, Gong XQ, Li MJ, LiC Chao, Sun TT, Ma FW (2018) Overexpression of a novel apple NAC transcription factor gene, MdNAC1, confers the dwarf phenotype in transgenic apple (Malus domestica). Genes 9(5):229

    PubMed Central  Google Scholar 

  • Kim SG, Park CM (2007) Membrane-mediated salt stress signaling in flowering time control. Plant Signal Behav 2(6):517–518

    PubMed  PubMed Central  Google Scholar 

  • Kim Y, Wang M, Bai Y, Zeng ZH, Guo F, Han N, Bian HW, Wang JH, Pan JW, Zhu MY (2014) Bcl-2 suppresses activation of VPEs by inhibiting cytosolic Ca2+ level with elevated K+ efflux in NaCl-induced PCD in rice. Plant Physiol Biochem 80:168–175

    CAS  PubMed  Google Scholar 

  • Kim HJ, Nam HG, Lim PO (2016) Regulatory network of NAC transcription factors in leaf senescence. Curr Opin Plant Biol 33:48–56

    PubMed  Google Scholar 

  • Kurkela S, Borg-Franck M (1992) Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol Biol 19(4):689–692

    CAS  PubMed  Google Scholar 

  • Li HS (2000) The experiment principle and technique for plant physiology and biochemistry. Beijing, China

    Google Scholar 

  • Liu Y, Sun J, Wu Y (2016) Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice. J Plant Res 129(5):955–962

    CAS  PubMed  Google Scholar 

  • Liu YM, Yu XW, Liu SS, Peng H, Mijiti C, Wang Z, Zhang H, Ma H (2017) A chickpea NAC-type transcription factor, CarNAC6, confers enhanced dehydration tolerance in Arabidopsis Plant. Mol Biol Rep 35:83–96

    CAS  Google Scholar 

  • Ma QB, Xia ZL, Cai ZD et al (2019) GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana. Front Sci 9:1–18

    Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozakibv K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:97–103

    CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM et al (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465(1–2):30–44

    CAS  PubMed  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10(2):79–87

    CAS  PubMed  Google Scholar 

  • Olsen LF, Issinger O, Guerra B (2013) The Yin and Yang of redox regulation. Redox Rep 18:245–252

    CAS  PubMed  Google Scholar 

  • Puranik S, Bahadur RP, Srivastava PS, Prasad M (2011) Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv]. Mol Biotechnol 49(2):138–150

    CAS  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17(6):369–381

    CAS  PubMed  Google Scholar 

  • Sanchez DH, Pieckenstain FL, Szymanski J et al (2011) Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. PLoS ONE 6(2):e17094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seok HY, Woo DH, Nguyen LV, Tran HT, Tarte VN, Lee SY, Moon YH (2017) Arabidopsis AtNAP functions as a negative regulator via repression of AREB1 in salt stress response. Planta 245(2):329–341

    CAS  PubMed  Google Scholar 

  • Shen J, Lv B, Luo L, He J, Mao C, Xi D, Ming F (2017) The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci Rep 7:40641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    CAS  PubMed  Google Scholar 

  • Tak H, Negi S, Ganapathi TR (2017) Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance. Protoplasma 254(2):803–816

    CAS  PubMed  Google Scholar 

  • Takagi H, Ishiga Y, Watanabe S, Konishi T, Egusa M, Akiyoshi N, Matsuura T, Mori IC, Hirayama T, Kaminaka H, Shimada H, Sakamoto A (2017) Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. J Exp Bot 68(17):2519–2532

    Google Scholar 

  • Thirumalaikumar VP, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller-Roeber B, Balazadeh S (2018) NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnol J 16(2):354–366

    CAS  PubMed  Google Scholar 

  • Wang L, Qin L, Liu W, Zhang D, Wang Y (2014) A novel ethylene responsive factor from Tamarix hispida, ThERF1, is a GCC-box- and DRE motif binding protein that negatively modulates abiotic stress tolerance in Arabidopsis. Physiol Plant 152(1):84–97

    CAS  PubMed  Google Scholar 

  • Wang F, Lin R, Feng J, Chen W, Qiu D, Xu S (2015) TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana. Front Plant Sci 6:108

    PubMed  PubMed Central  Google Scholar 

  • Wang G, Zhang S, Ma X, Wang Y, Kong F, Meng Q (2016) A stress associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Plant Physiol 158(1):45–64

    CAS  Google Scholar 

  • Wang K, Zhong M, Wu YH, Bai ZY, Liang QY, Liu QL, Pan YZ, Zhang L, Jiang BB, Jia Y, Liu GL (2017) Overexpression of a chrysanthemum transcription factor gene DgNAC1 improves the salinity tolerance in chrysanthemum. Plant Cell Rep 36(4):571–581

    CAS  PubMed  Google Scholar 

  • Wang JF, Zhang L, Cao YY, Qi CD, Li ST, Liu L, Wang GL, Mao AJ, Ren SX, Guo YD (2018) CsATAF1 positively regulates drought stress tolerance by an ABA-dependent pathway and by promoting ROS scavenging in cucumber. Plant Cell Physiol 59(5):930–945

    CAS  PubMed  Google Scholar 

  • Welner DH, Lindemose S, Grossmann JG, Mollegaard NE, Olsen AN, Helgstrand C, Skriver K, Lo LL (2012) DNA binding by the plant-specific NAC transcription factors in crystal and solution: a firm link to WRKY and GCM transcription factors. Biochem J 444(3):395–404

    CAS  PubMed  Google Scholar 

  • Wu YR, Deng ZY, Lai JB, Zhang YY, Yin BJ, Zhao QZ, Zhang L, Li Y, Yang CW, Xie Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19(11):1279–1290

    CAS  PubMed  Google Scholar 

  • Wu H, Fu B, Sun P, Xiao C, Liu JH (2016) A NAC transcription factor represses putrescine biosynthesis and affects drought tolerance. Plant Physiol 172(3):1532–1547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang JH, Zhou XY, Zhang XW, Zhang XW, Liu AL, Xiang YC, Yan ML, Peng Y, Chen XB (2018) The Arabidopsis AtUNC-93 acts as a positive regulator of abiotic stress tolerance and plant growth via modulation of ABA signaling and K+ homeostasis. Front Plant Sci 9:718

    PubMed  PubMed Central  Google Scholar 

  • Xiong LM, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:165–183

    Google Scholar 

  • Xu B, Ohtani M, Yamaguchi M, Toyooka K, Wakazaki M, Sato M, Kubo M, Nakano Y, Sano R, Hiwatashi Y, Murata T, Kurata T, Yoneda A, Kato K, Hasebe M, Demura T (2014) Contribution of NAC transcription factors to plant adaptation to land. Science 343(6178):1505–1508

    CAS  PubMed  Google Scholar 

  • Yin ZP, Shang ZW, Ren J, Song XS (2012) Foliar sprays of photosynthetic bacteria improve the growth and anti-oxidative capability on Chinese dwarf cherry seedlings. J Plant Nutr 35(6):840–853

    CAS  Google Scholar 

  • Zhao Y, Sun J, Xu P, Rui Zhang, Li LG (2014) Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in populus species. Plant Physiol 164(2):765–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R (2014) Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiol 152(4):1044–1055

    Google Scholar 

  • Zhu MK, Chen GP, Zhang JL, Zhang YJ, Xie QL, Zhao ZP, Zong YP, Hu L (2014) The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Rep 33(11):1851–1863

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundamental Research Funds for the Central Universities (Grant No. 2572018CG02), the National Natural Science Foundation of China (Grant No. 31170569) and the Innovation Project of State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University).

Author information

Authors and Affiliations

Authors

Contributions

XSS conceived and designed the study. FW carried out the main experiments and wrote the manuscript. JWW cloned the ChNAC1 gene. LJS performed the gene expression analysis. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Xing Shun Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Wang, J.W., Sun, L.J. et al. The molecular cloning and functional characterization of ChNAC1, a NAC transcription factor in Cerasus humilis. Plant Growth Regul 89, 331–343 (2019). https://doi.org/10.1007/s10725-019-00536-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-019-00536-9

Keywords

Navigation