Skip to main content
Log in

Dynamics of Adsorbate Islands with Nanoscale Resolution

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Surface catalytic processes produce, under certain conditions, small clusters of adsorbed atoms or groups, called islands which, after they have been formed, move as individual entities. Here we consider the catalytic reduction of NO with hydrogen on platinum. (i) Using video field ion microscopy, we observe the dynamic motion of small hydroxyl islands on the Pt(001) plane; despite changes in their morphology, the islands dimensions are confined to values corresponding to 10 to 30 Pt atoms suggesting cooperative effects to be in operation. (ii) We construct an automaton (or lattice Monte-Carlo) model on the basis of a set of elementary processes governing the microscopic dynamics. The agreement between the simulation results and the experimental observations suggests a possible mechanism for the formation and dynamics of hydroxyl islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Wintterlin, S. Völkening, T. V. W. Janssens, T. Zambelli, and G. Ertl, Science 278:1931 (1997).

    Google Scholar 

  2. Z. Zambelli, J. V. Bart, J. Wintterlin, and G. Ertl, Nature 390:495 (1997).

    Google Scholar 

  3. V. Gorodetskii, W. Drachsel, and J. H. Block, Catal. Lett. 19:223 (1993).

    Google Scholar 

  4. C. Voss and N. Kruse, Appl. Surf. Sci. 87/88:127 (1994).

    Google Scholar 

  5. B. Sieben, G. Bozdech, N. Ernst, and J. H. Block, Surf. Sci. 167:352 (1996).

    Google Scholar 

  6. J. P. Boon, D. Dab, R. Kapral, and A. Lawniczak, Phys. Reps. 173:55 (1996).

    Google Scholar 

  7. A. Gaussmann and N. Kruse, Catal. Lett. 10:305 (1991).

    Google Scholar 

  8. C. Voss, G. Abend, and N. Kruse, to be published.

  9. K. Heinz, P. Heilmann, and K. Müller, Z. Naturf. 32a:28 (1977).

    Google Scholar 

  10. M. A. Van Hove, R. J. Koestner, P. C. Stair, J. P. Biberian, L. L. Kesmodel, I. Bartos, and G. A. Somorjai, Surf. Sci. 103:189 (1981); ibid. 103:218 (1981).

    Google Scholar 

  11. H. P. Bonzel, G. Broden, and G. Pirug, J. Catal. 53:96 (1978).

    Google Scholar 

  12. K. Schwaha and E. Berthold, Surf. Sci. 66:383 (1977).

    Google Scholar 

  13. S. J. Lombardo, T. Fink, and R. Imbihl, J. Chem. Phys. 98:5526 (1993).

    Google Scholar 

  14. D. Y. Zemlyanov, M. Y. Smirnov, V. V. Gorodetskii, and J. H. Block, Surf. Sci. 329:61 (1995).

    Google Scholar 

  15. H. J. Kreuzer and R. L. C. Wang, Z. Phys. Chem. 202:127 (1997).

    Google Scholar 

  16. L. K. Verheij, M. B. Hupschmidt, B. Poelsema, and G. Comsa, Surf. Sci. 233:209 (1990).

    Google Scholar 

  17. V. P. Zhdanov, Phys. Rev. E 59:6292 (1999), and references therein.

    Google Scholar 

  18. A theoretical mesoscopic approach to model traveling nanostructures in surface reactions, based on the assumption of strong attractive adsorbate-adsorbate interactions, is presented in M. Hildebrand, A. S. Mikhailov, and G. Ertl, Phys. Rev. Lett. 81:2602 (1998).

    Google Scholar 

  19. J. P. Boon, C. Bodenstein, and D. Hanon, Int. J. Mod. Phys. C 9:1559 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruse, N., Voss, C., Medvedev, V. et al. Dynamics of Adsorbate Islands with Nanoscale Resolution. Journal of Statistical Physics 101, 621–629 (2000). https://doi.org/10.1023/A:1026407405872

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026407405872

Navigation