Skip to main content
Log in

Carbon and nitrogen stable isotopic variation in Laguncularia racemosa (L.) (white mangrove) from Florida and Belize: implications for trophic level studies

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Carbon and nitrogen stable isotopic data from the primary producers in mangrove ecosystems are needed to investigate trophic links and biogeochemical cycling. Compared with other mangrove species (e.g. Rhizophora mangle) very few measurements have been conducted on the white mangrove, Laguncularia racemosa. The carbon and nitrogen stable isotopic and elemental compositions of L. racemosa were analyzed and compared from Florida and Belize. δ13C values of L. racemosa from Florida (mean = –26.4‰) were slightly higher than those from Twin Cays, Belize (mean = -27.4‰), which may be due to higher salinity in some parts of the Florida site. There was no difference between the δ15N values from L. racemosa from these two sites (Florida mean = 0.6‰; Belize mean = 0.3‰), which are indicative of nitrogen derived from nitrogen fixation in a planktonic marine system. However, higher δ15N values from L. racemosa at Man of War Cay in Belize (11.4‰ and 12.3‰), which is fertilized by roosting marine birds (∼14.0‰), illustrate that L. racemosa can sensitively reflect alternative nitrogen sources. Although the isotopic data could not distinguish between Avicennia germinans, R. mangle and L. racemosa in Belize the L. racemosa had considerably higher C/N ratios (46.5 – 116.1) compared with the Florida samples (42.2 – 76.0) or the other mangrove species. Unlike some previous findings from R. mangle, substrate characteristics (e.g. salinity, NH4 +, and H2S) were not related to the isotopic or elemental composition of L. racemosa. δ13C, δ15N and C/N were analyzed for ecosystem components from L. racemosa habitats at Twin Cays, including other plants (e.g. R. mangle, A. germinans and seagrass), detritus, microbial mats and sediments. Results from mass-balance calculations show that mangrove detritus composes very little of the sediment, which is principally composed of microbial biomass (80 – 90%). Detritus at some sites is also influenced by sources other than that from L. racemosa, including seagrass leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alongi, D. M., K. G. Boto, & A. I. Robertson 1992. Nitrogen and Phosphorus cycles. In Robertson A. I. & D. M. Alongi (eds), Tropical Mangrove Ecosystems. vol. 41. Washington DC: American Geophysical Union: 251–292.

    Google Scholar 

  • Alongi, D. M., P. Chistoffersen & F. Tirendi 1993. The influence of forest type on the microbial-nutrient relationships in tropical mangrove sediments. J. Exp. Biol. Ecol. 17: 1201–1223.

    Google Scholar 

  • Bohlolli, B. B., E. L. & C. Beasley, 1977. Nitrification in the intertidal zone: influence of effluent type and effect of tannin on nitrifiers. Appl. Environ. Microbiol. 34: 523–528.

    PubMed  Google Scholar 

  • Cifuentes, L. A., R. B. Coffin, L. Solorzano, W. Cardenas, J. Espinoza & R. R. Twilley, 1996. Isotopic and elemental variations of carbon and nitrogen in a mangrove estuary. Estuar. coast. shelf Sci. 43: 781–800.

    Google Scholar 

  • Chen, R. & R. R. Twilley, 1999. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida. Estuaries 22: 955–970.

    Google Scholar 

  • Cline, J. D., 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14: 454–458.

    Google Scholar 

  • Clough, B. F., 1992. Primary productivity and growth of mangrove forests. In Robertson A. I. & D. M. Alongi (eds), Tropical Mangrove Ecosystems, vol 41. Washington DC: American Geophysical Union: 225–250.

    Google Scholar 

  • Davis, J. H., 1940. The ecology and geologic role of mangroves in Florida. Papers of the Tortugas Laboratory (Carnegie Institution) 32: 303–412.

    Google Scholar 

  • Farquhar, G. D., M. C. Ball, S. V. Caemmerer & Z. Roksandic, 1982. Effects of salinity and humidity on δ13C values of halophytes – evidence from diffusional fractionation determined by the ratio of intercellular/atmospheric CO2 under different environmental conditions. Oecologia 52: 121–124.

    Google Scholar 

  • Fell, J.W., I. M. Master & S. Y. Newell, 1980. Laboratory model of the potential role of fungi in the decomposition or red mangrove (Rhizophora mangle) leaf litter. In Tenore K. R. & B. C. Coull (eds), Marine Benthic Dynamics. Columbia: University of South Carolina Press: 359–372.

    Google Scholar 

  • Feller, I. C. & K. L. McKee, 1999. Small gap creation in Belizean mangrove forests by a wood-boring insect. Biotropica 31: 607–617.

    Google Scholar 

  • Feller, I. C., D. F. Whigham, K.L. McKee, C. E. Lovelock & J. P. O'Neill, (in press). Nutrient limitations and decomposition in tropical mangroves. Biogeochemistry.

  • Flemming, M., G. Lin & L. d. S. L. Sternberg, 1990. Influence of mangrove detritus in an estuarine ecosystem. Bull. mar. Sci. 47: 663–669.

    Google Scholar 

  • Flores-Verdugo, F. J., Jr., J. W. D. & R. Briseno-Duenas, 1987. Structure, litter fall, decomposition, and detritus dynamics of mangroves in a Mexican coastal lagoon with an ephemeral inlet. Mar. Ecol.Prog. Ser. 35: 83–90.

    Google Scholar 

  • Fry, B., A. L. Bern, M. S. Ross & J. F. Meeder, 2000. δ15N studies of nitrogen use by the red mangrove, Rhizophora mangle L. in South Florida. Estuar. coast. shelf Sci. 50: 291–296.

    Google Scholar 

  • Gonzalez-Farias, F. & L. D. Mee, 1988. Effect of mangrove humiclike substances on biodegradation rate of detritus. J. exp. Biol. Ecol. 119: 1–13.

    Google Scholar 

  • Ish-Sholom-Gordon, N., G. Lin & L. d. S. L. Sternberg, 1992. Isotopic fractionation during cellulose synthesis in two mangrove species: salinity effects. Phytochemistry 31: 2623–2626.

    Google Scholar 

  • Jimenez, J. A. 1985. 'Laguncularia racemosa' (L.) Gaertn.f. White mangrove. Institute of Tropical Forestry, Rio Piedras: 1–4.

  • Koltes, K. H., J. J. Tschirky & I. C. Feller 1998. Carrie Bow Cay, Belize. In Kjerfve, B. (ed.), CARICOMP – Caribbean Coral Reef, Seagrass, and Mangrove sites. Paris: United Nations Educational, Scientific and Cultural Organization (UNESCO): 79–94.

    Google Scholar 

  • Krotzky, A. & D. Werner, 1987. Nitrogen fixation in Pseudomonas stutzeri. Arch. Microbiol. 147: 48–57.

    Google Scholar 

  • Lajtha, K. & J. D. Marshall, 1994. Sources of variation in the stable isotopic composition of plants. In Lartha, K. & J. D. Marshall, (eds), Stable Isotopes in Ecology and Environmental Science. London. Blackwell Scientific Publications: 1–21.

    Google Scholar 

  • Lambert, G., T. D. Steinke & Y. Naidoo, Algae associated with mangroves in southern African estuaries: Cyanophyceae South African J. Bot. 55: 476–491.

  • Lin, G., T. Banks & L. d. D. L. Sternberg, 1991. Variation in δ13C values for the seagrass Thalassia testudinum and its relations to mangrove carbon. Aquat. Bot. 40: 333–341.

    Google Scholar 

  • Lin, G. & L. d. S. L. Sternberg, 1992a. Comparative study of water uptake and photosynthetic gas exchange between scrub and fringe red mangroves, Rhizophora mangle L. Oecologia 90: 399–403.

    Google Scholar 

  • Lin, G. & L. d. S. L. Sternberg, 1992b. Differences in morphology, carbon isotope ratios, and photosynthesis between scrub and fringe mangroves in Florida, U.S.A. Aquat. Bot. 42: 303–313.

    Google Scholar 

  • Lin, G. & L. d. S. L. Sternberg, 1992c. Effect of growth form, salinity, nutrient and sulfide on photosynthesis, carbon isotope discrimination and growth of Red mangrove (Rhizophora mangle L.). Aust. J. Plant Physiol. 19: 509–517.

    Google Scholar 

  • Lin, G. & L. d. S. L. Sternberg, 1994. Utilization of surface water by red mangrove (Rhizophora mangle L.): An isotopic study. Bull. mar. Sci. 54: 94–102.

    Google Scholar 

  • Lugo, A. E. & S C. Snedaker, 1974. The ecology of mangroves. Ann. Rev. Ecol. Syst. 5: 39–64.

    Google Scholar 

  • Macko, S. A. & N. E. Ostrum, 1994. Pollution studies using stable isotopes. In Lajtha K. & R. Michener (eds), Stable Isotopes in Ecology and Environmental Science. Oxford: Blackwell Scientific Publications: 45–62.

    Google Scholar 

  • McKee, K. L., 1995. Mangrove species distribution and propogule predation in Belize: An exception to the dominance-predation hypothesis. Biotropica 27: 334–345.

    Google Scholar 

  • McKee, K. L., I. C. Feller, M. Popp & W. Wanek, W. (in press). Mangrove isotopic fractionation (15N and 13C) across a nitrogen versus phosphorus limitation gradient. Ecology.

  • Newell, S. Y., J. D. Miller & J. W. Fell, 1987. Rapid and pervasive occupation of fallen mangrove leaves by marine zoosporic fungus. Appl. Environ. Microbiol. 53: 2464–2469.

    Google Scholar 

  • Newman, J., 1991. The study of diet and trophic relationships through natural abundance 13C. In Coleman D. C. & B. Bry (eds), Carbon Isotope Techniques. Academic Press: 201–218.

  • Presley, B. J., 1971. Techniques for analyzing interstitial water samples. Part I: determination of selected minor and major inorganic constituents. Initial Report. Deep Sea Drilling Project 7: 1749–1755.

    Google Scholar 

  • Rutzler, K. & J. D. Ferraris, 1982. Terrestrial environment and climate, Carrie Bow Cay, Belize. In Rutzier K. & I. G. Macintyre (eds), The Atlantic barrier reef ecosystem at Carrie Bow Cay, Belize, I. Washington D.C.: Smithsonian Institution Press: 77–92.

    Google Scholar 

  • Sarazin, G., G. Michard & F. Prevot, 1999. A rapid and accurate spectroscopic method for alkalinity measurements in sea water samples. Wat. Res. 33: 290–294.

    Google Scholar 

  • Snedaker, S. C., 1982. Mangrove species zonation: Why? In Sen, D. N. & K. S. Rajpurchit (es), Tasks for Vegetation Science. The Hague: Dr. W. Junk Publishers: 111–125.

    Google Scholar 

  • Soloranzo, L., 1969. Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol. Oceanogr. 14: 799–801.

    Google Scholar 

  • Stowe, K. A., 1995. Intracrown distribution of herbivore damage on Laguncularia racemosa in a tidally influenced riparian habitat. Biotropica 27: 509–512.

    Google Scholar 

  • Thom, B. G., 1967. Mangrove ecology and deltaic geomorphology, Tabasco, Mexico. J. Ecol. 55: 301–343.

    Google Scholar 

  • Vazquez, P., G. Holguin, M. E. Puente, A. Lopez-Cortes & Y. Bashan, 2000. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol. Fert. Soils 30: 460–468.

    Google Scholar 

  • Walsh, G. E., 1977. Exploitation of mangal. In Chapman, V. J. (ed.), Ecosystems of the world, vol. 1. Oxford: Elsevier Scientific Publishing Co: 61–67.

    Google Scholar 

  • Wooller, M. J., B. Collins & M. Fogel, 2001 The elemental analyzer sample carousel: loading an autosampler made easy. Rapid Communications in Mass Spectrometry 15: 1957–1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wooller, M., Smallwood, B., Jacobson, M. et al. Carbon and nitrogen stable isotopic variation in Laguncularia racemosa (L.) (white mangrove) from Florida and Belize: implications for trophic level studies. Hydrobiologia 499, 13–23 (2003). https://doi.org/10.1023/A:1026339517242

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026339517242

Navigation