Skip to main content
Log in

Seagrass Isoscapes and Stoichioscapes Reveal Linkages to Inorganic Nitrogen Sources in the Lower Laguna Madre, Western Gulf of Mexico

  • Special Issue: Low Inflow Estuaries
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Seagrasses assimilate nitrogen (N) and phosphorus (P) from their environment over the course of the growing period, reflecting long-term, system-wide environmental conditions. We examined the role of two Texas seagrasses, Halodule wrightii and Thalassia testudinum, as indicators of N and P conditions in the western Gulf of Mexico via their tissue isotopic (δ15N) and stoichiometric (N:P) ratios. Leaf tissue samples were collected from 285 sampling sites in the Lower Laguna Madre from 2011 to 2018. Data were used to develop interpolated maps of δ15N signatures and N:P ratios across the region. We found that higher variability in H. wrightii metrics reflected the higher sensitivity of this species to short term changes in nutrient sources. T. testudinum exhibited a narrower range in isotopic ratios and N:P values (mean standard deviation of 1.6‰ and 11, respectively compared to 2.4‰ and 12.5 for H. wrightii), indicative of its relatively slow leaf turnover. The highest δ15N values (7–9‰) were recorded near the mouth of the Arroyo Colorado, which carries discharges from a large, urbanized region into an otherwise highly oligotrophic lagoon. Elevated N:P ratios in both species (60–80) were prevalent in the upper reaches of the lower Laguna, likely reflecting inorganic-N inputs by large expanses of N-fixing cyanobacterial mats on nearby wind tidal flats. These metrics reveal that seagrass tissues can serve as valuable indicators of inorganic-N sources in low-inflow estuarine systems where freshwater input is negligible or absent for extended periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Seagrass canopy height, water depth, chlorophyll-a concentration and other plant and water quality indicators in Coastal Waters of Texas (NCEI Accession 0181898). NOAA National Centers for Environmental Information. Dataset. https://www.ncei.noaa.gov/archive/accession/0181898. Also see: https://www.texasseagrass.org

References

  • Atkinson, M.J., and S.V. Smith. 1984. C:N:P ratios of benthic marine plants. Limnology and Oceanography 28: 568–574.

    Article  Google Scholar 

  • Bertelli, C.M., J.C. Creed, H.K. Nuuttila, and K.F. Unsworth. 2020. The response of the seagrass Halodule wrightii Ascherson to environmental stressors. Estuarine, Coastal, and Shelf Science. https://doi.org/10.1016/j.ecss.2020.106693.

    Article  Google Scholar 

  • Bowen, G.J. 2010. Isoscapes: spatial pattern in isotopic biogeochemistry. Annual Review of Earth and Planetary Sciences. https://doi.org/10.1146/annurev-earth-040809-152429.

    Article  Google Scholar 

  • Brock, D.A. 2001. Nitrogen budget for low and high freshwater inflows, Nueces Estuary, Texas. Estuaries. https://doi.org/10.2307/1353253.

    Article  Google Scholar 

  • Brown, J.L.F., J.L. Brewton, T.J. Evans, J.H. McGowen, W.A. White, C.G. Groat, and W.L. Fisher. 1980. Environmental geologic atlas of the Texas coastal zone-Brownsville-Harlingen area. Austin, TX: The University of Texas at Austin Bureau of Economic Geology.

    Google Scholar 

  • Buck, C.M., F.P. Wilkerson, A.E. Parker, and R.C. Dugdale. 2014. The influence of coastal nutrients on phytoplankton productivity in a shallow low inflow estuary, Drakes Estero, California (USA). Estuaries and Coasts. https://doi.org/10.1007/s12237-013-9737-6.

    Article  Google Scholar 

  • Burkholder, D.A., J.W. Fourqurean, and M.R. Heithaus. 2013. Spatial pattern in seagrass stoichiometry indicates both N-limited and P-limited regions of an iconic P-limited subtropical bay. Marine Ecology Progress Series 472: 101–115.

    Article  Google Scholar 

  • Campbell, J.E., and J.W. Fourqurean. 2009. Interspecific variation in the elemental and stable isotope content of seagrasses in South Florida. Marine Ecology Progress Series 387: 109–123.

    Article  CAS  Google Scholar 

  • Carriquiry, J.D., P. Jorgensen, J.A. Villaescusa, and S.E. Ibarra-Obando. 2016. Isotopic and elemental composition of marine macrophytes as biotracers of nutrient recycling within a coastal lagoon in Baja California, Mexico. Estuaries and Coasts. https://doi.org/10.1007/s12237-015-9992-9.

    Article  Google Scholar 

  • Chapman, H.D., and P.F. Pratt. 1961. Methods of analysis for soils, plants and water. Berkley, CA: Univ. California, Berkeley.

    Google Scholar 

  • Christiaen, B., R.J. Bernard, B. Mortazavi, J. Cebrian, and A.C. Ortmann. 2014. The degree of urbanization across the globe is not reflected in the δ15N of seagrass leaves. Seagrass Meadows in a Globally Changing Environment. https://doi.org/10.1016/j.marpolbul.2013.06.024.

    Article  Google Scholar 

  • Cira, E.K., T.A. Palmer, and M.S. Wetz. 2021. Phytoplankton dynamics in a low-inflow estuary (Baffin Bay, TX) during drought and high-rainfall conditions associated with an El Niño Event. Estuaries and Coasts. https://doi.org/10.1007/s12237-021-00904-7.

    Article  Google Scholar 

  • Congdon, V.M. 2021. Assessing seagrass ecosystem status and condition: multi-scale applications of a long-term monitoring program. Austin, TX: The University of Texas at Austin Doctoral dissertation.

    Google Scholar 

  • Costanzo, S.D.M.J., W.C. O’Donohue, N.R. Loneragan. Dennison, and M. Thomas. 2001. A new approach for detecting and mapping sewage impacts. Marine Pollution Bulletin. https://doi.org/10.1016/S0025-326X(00)00125-9.

    Article  Google Scholar 

  • Darnell, K.M., and K.H. Dunton. 2017. Plasticity in turtle grass (Thalassia testudinum) flower production as a response to porewater nitrogen availability. Aquatic Botany 138: 100–106. https://doi.org/10.1016/j.aquabot.2017.01.007.

    Article  CAS  Google Scholar 

  • Dawes, C.J. 1998. Marine botany. New York, NY: John C. Wiley & Sons.

    Google Scholar 

  • Dennison, W.C., R.J. Orth, K.A. Moore, J.C. Stevenson, V. Carter, S. Kollar, P.W. Bergstrom, and R.A. Batiuk. 1993. Assessing water quality with submersed aquatic vegetation. BioScience 43: 86–94.

    Article  Google Scholar 

  • DeYoe, H.R., W. Pulich Jr., M. Lupher, R. Neupane, and C.G. Guthrie. 2023. Impacts of episodic freshwater inflow pulses on seagrass dynamics in the Lower Laguna Madre, Texas, 1998–2017. Estuaries and Coasts. https://doi.org/10.1007/s12237-023-01170-5.

    Article  Google Scholar 

  • Duarte, C.M. 1990. Seagrass nutrient content. Marine Ecology Progress Series 67: 201–207.

    Article  Google Scholar 

  • Dunton, K.H. 1994. Seasonal growth and biomass of the subtropical seagrass Halodule wrightii in relation to continuous measurements of underwater irradiance. Marine Biology. https://doi.org/10.1007/BF00680223.

    Article  Google Scholar 

  • Dunton, K.H., K. Jackson, S. Wilson, V. Congdon, M. Cuddy, W. Hall, M. Becker, J. Meiman, T. Whiteaker, P. Bohannon, F. Grubbs, and C. Hobson. 2018. Seagrass canopy height, water depth, chlorophyll-a concentration and other plant and water quality indicators in Coastal Waters of Texas (NCEI Accession 0181898). NOAA National Centers for Environmental Information. Dataset. https://www.ncei.noaa.gov/archive/accession/0181898. Accessed 26 Mar 2023.

  • Dunton, K.H., W. Pulich, and T. Mutchler. 2011. A seagrass monitoring program for Texas coastal waters: multiscale integration of landscape features with plant and water quality indicators. Corpus Christi, TX: Coastal Bend Bays & Estuaries Program. http://www.texasseagrass.org/doc/A%20Seagrass%20Monitoring%20Program%20for%20Texas%201-10-11.pdf. Accessed 26 Mar 2023.

  • Ferdie, M., and J.W. Fourqurean. 2004. Responses of seagrass communities to fertilization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment. Limnology and Oceanography. https://doi.org/10.4319/lo.2004.49.6.2082.

    Article  Google Scholar 

  • Fourqurean, J.W., and J.C. Zieman. 2002. Nutrient content of the seagrass Thalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys USA. Biogeochemistry. https://doi.org/10.1023/A:1020293503405.

    Article  Google Scholar 

  • Fourqurean, J.W., J.C. Zieman, and G.V.N. Powell. 1992. Phosphorus limitation of primary production in Florida Bay: Evidence from C:N: P ratios of the dominant seagrass Thalassia testudinum. Limnology and Oceanography. https://doi.org/10.4319/lo.1992.37.1.0162.

    Article  Google Scholar 

  • Fourqurean, J.W., T.O. Moore, B. Fry, and J.T. Hollibaugh. 1997. Spatial and temporal variation in C:N: P ratios, δ15N and δ13C of eelgrass Zostera marina as indicators of ecosystem processes, Tomales Bay, California, USA. Marine Ecology Progress Series 157: 147–157.

    Article  CAS  Google Scholar 

  • Fourqurean, J.W., S.P. Escorcia, W.T. Anderson, and J.C. Zieman. 2005. Spatial and seasonal variability in elemental content, δ13C and δ15N of Thalassia testudinum from South Florida and its implications for ecosystem studies. Estuaries. https://doi.org/10.1007/BF02693926.

    Article  Google Scholar 

  • Fourqurean, J.W., S.A. Manuel, K.A. Coates, W.J. Kenworthy, and J.N. Boyer. 2015. Water quality, isoscapes and stoichioscapes of seagrasses indicate general P limitation and unique N cycling in shallow water benthos of Bermuda. Biogeosciences. https://doi.org/10.5194/bg-12-6235-2015.

    Article  Google Scholar 

  • Fry, B. 2006. Stable isotope ecology. New York: Springer.

    Book  Google Scholar 

  • Gallegos, M.E., M. Merino, A. Rodriguez, N. Marbà, and C.M. Duarte. 1994. Growth patterns and demography of pioneer Caribbean seagrasses Halodule wrightii and Syringodium filiforme. Marine Ecology Progress Series 109 (1): 99–104.

    Article  Google Scholar 

  • Gardner, W.S., M.J. McCarthy, A. Soonmo, D. Sobolev, K.S. Sell, and D. Brock. 2006. Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries. Limnology and Oceanography. https://doi.org/10.4319/lo.2006.51.1part2.0558.

    Article  Google Scholar 

  • Goodin, K.L., D. Faber-Langendoen, J. Brenner, S.T. Allen, R.H. Day, V.M. Congdon, C. Shepard, K.E. Cummings, C.L. Stagg, C.A. Gabler, M. Osland, K.H. Dunton, R.R. Ruzicka, K. Semon-Lunz, D. Reed, and M. Love. 2018. Ecological resilience indicators for five northern Gulf of Mexico ecosystems. Arlington, VA: NatureServe.

    Google Scholar 

  • Gras, A.F., M.S. Koch, and C.J. Madden. 2003. Phosphorus uptake kinetics of a dominant tropical seagrass Thalassia testudinum. Aquatic Botany. https://doi.org/10.1016/S0304-3770(03)00069-X.

    Article  Google Scholar 

  • Hamisi, M.I., T.J. Lyimo, M.H.S. Muruke, and B. Bergman. 2009. Nitrogen fixation by epiphytic and epibenthic diazotrophs associated with seagrass meadows along the Tanzanian coast, Western Indian Ocean. Aquatic Microbial Ecology. https://doi.org/10.3354/ame01323.

    Article  Google Scholar 

  • Hoering, T.C., and H.T. Ford. 1960. The isotope effect in the fixation of nitrogen by Azotobacter. Journal of the American Chemical Society 82: 376–378.

    Article  CAS  Google Scholar 

  • Huang, I.-S., L.J. Pinnell, J.W. Turner, H. Abdulla, L. Boyd, E.W. Linton, and P.V. Zimba. 2020. Preliminary assessment of microbial community structure of wind-tidal flats in the Laguna Madre, Texas, USA. Biology. https://doi.org/10.3390/biology9080183.

    Article  Google Scholar 

  • Kaldy, J.E., and K.H. Dunton. 2000. Above- and below-ground production, biomass and reproductive ecology of Thalassia testudinum (turtle grass) in a subtropical coastal lagoon. Marine Ecology Progress Series. https://doi.org/10.3354/meps193271.

    Article  Google Scholar 

  • Kaldy, J.E., K.H. Dunton, J.L. Kowalski, and K.-S. Lee. 2004. Factors controlling seagrass revegetation onto dredged material deposits: a case study in Lower Laguna Madre, Texas. Journal of Coastal Research. https://doi.org/10.2112/1551-5036(2004)20[292:FCSROD]2.0.CO;2.

    Article  Google Scholar 

  • Kennedy, H., J. Beggins, C.M. Duarte, J.W. Fourqurean, M. Holmer, N. Marbà, and J.J. Middelburg. 2010. Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochemical Cycles. https://doi.org/10.1029/2010GB003848.

    Article  Google Scholar 

  • Kowalski, J.L., H.R. DeYoe, and T.C. Allison. 2009. Seasonal production and biomass of the seagrass, Halodule wrightii Aschers. (shoal grass), in a subtropical Texas lagoon. Estuaries and Coasts. https://doi.org/10.1007/s12237-009-9146-z.

    Article  Google Scholar 

  • Krivoruchko, K. 2012. Empirical Bayesian Kriging implemented in ArcGIS geostatistical analyst. https://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html. Accessed 26 Mar 2023.

  • Largier, J.L. 2010. Low-inflow estuaries: hypersaline, inverse, and thermal scenarios. In Contemporary issues in estuarine physics, ed. A. Valle-Levinson. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Largier, J.L., C.J. Hearn, and D.B. Chadwick. 1996. Density structures in low inflow estuaries. In Buoyancy effects on coastal and estuarine dynamics, ed. M.J. Bowman and C.N.K. Mooers. Washington, DC: American Geophysical Union.

    Google Scholar 

  • Lee, K.-S., and K.H. Dunton. 1999. Inorganic nitrogen acquisition in the seagrass Thalassia testudinum: development of a whole-plant nitrogen budget. Limnology and Oceanography. https://doi.org/10.4319/lo.1999.44.5.1204.

    Article  Google Scholar 

  • Lee, K.-S., F.T. Short, and D.M. Burdick. 2004. Development of a nutrient pollution indicator using the seagrass, Zostera marina, along nutrient gradients in three New England estuaries. Aquatic Botany. https://doi.org/10.1016/j.aquabot.2003.09.010.

    Article  Google Scholar 

  • Lepoint, G., P. Dauby, and S. Gobert. 2004. Applications of C and N stable isotopes to ecological and environmental studies in seagrass ecosystems. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2004.07.005.

    Article  Google Scholar 

  • Longley, W.L. 1994. Freshwater inflows to Texas bays and estuaries: ecological relationships and methods for determination of needs. Austin, TX: Texas Water Development Board and Texas Parks and Wildlife Department.

    Google Scholar 

  • MacGregor, B.J., B. Van Mooy, B. J. Baker, M. Mellon, P. H. Moisander, H. W. Paerl, J. Zehr, D. Hollander, and D. A. Stahl. 2001. Microbiological, molecular biological and stable isotopic evidence for nitrogen fixation in the open waters of Lake Michigan. Environmental Microbiology 3 (3): 205–219. https://doi.org/10.1046/j.1462-2920.2001.00180.x

  • Mahaffey, C., R.G. Williams, G.A. Wolf, N. Mahowald, W. Anderson, and M. Woodward. 2003. Biogeochemical signatures of nitrogen fixation in the eastern North Atlantic. Geophysical Research Letters. https://doi.org/10.1029/2002GL016542.

    Article  Google Scholar 

  • McClelland, J.W., I. Valiela, and R.H. Michener. 1997. Nitrogen-stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds. Limnology and Oceanography. https://doi.org/10.4319/lo.1997.42.5.0930.

    Article  Google Scholar 

  • Neckles, H., B. Kopp, B. Peterson, and P. Pooler. 2012. Integrating scales of seagrass monitoring to meet conservation needs. Estuaries and Coasts. https://doi.org/10.1007/s12237-011-9410-x.

    Article  Google Scholar 

  • NOAA Office for Coastal Management. 2015. Coastal Bend Texas Benthic Habitat Mapping Aransas Bay 2004 Substrate [2004-2007]. https://www.fisheries.noaa.gov/inport/item/47947. Accessed 30 May 2022.

  • Onuf, C.P. 2007. Laguna Madre. In Seagrass status and trends in the northern Gulf of Mexico, ed. L. Handley, D. Altsman, and R. DeMay, 1940–2002. Reston, VA: U.S. Geological Survey Scientific Investigations Report.

    Google Scholar 

  • Orth, R.J., W.C. Dennison, J.S. Lefcheck, C. Gurbisz, M. Hannam, J. Keisman, J.B. Landry, K.A. Moore, R.R. Murphy, C.J. Patrick, J. Testa, D.E. Weller, and D.J. Wilcox. 2017. Submersed aquatic vegetation in Chesapeake Bay: Sentinel species in a changing world. BioScience. https://doi.org/10.1093/biosci/bix058.

    Article  Google Scholar 

  • Presley, R., and J.M. Caffrey. 2021. Nitrogen fixation in subtropical seagrass sediments: seasonal patterns in activity in Santa Rosa Sound, Florida, USA. Journal of Marine Science and Engineering. https://doi.org/10.3390/jmse9070766.

    Article  Google Scholar 

  • Pulich, W.M. 1985. Seasonal growth dynamics of Ruppia maritima L. and Halodule wrightii Aschers. in southern Texas and evaluation of sediment fertility status. Aquatic Botany. https://doi.org/10.1016/0304-3770(85)90020-8.

    Article  Google Scholar 

  • Pulich, W.M., Jr., and C.P. Onuf. 2007. Statewide summary for Texas. In Seagrass status and trends in the northern Gulf of Mexico: 1940–2002, ed. L. Handley, D. Altsman, and R. DeMay, 7–15. Reston, VA: U.S. Geological Survey Scientific Investigations Report.

    Google Scholar 

  • Pulich, W., Jr., and N.S. Rabalais. 1986. Primary production potential of blue-green algal mats on southern Texas tidal flats. The Southwestern Naturalist 31 (1): 39–47.

    Article  Google Scholar 

  • Pulich, W.M., Jr., and R.S. Scalan. 1987. Organic carbon and nitrogen flow from marine Cyanobacteria to semiaquatic insect food webs. Contributions in Marine Science 30: 27–37.

    Google Scholar 

  • Roca, G., T. Alcoverro, D. Krause-Jensen, T.J.S. Balsby, M.M. Van Katwijk, N. Marbà, R. Santos, R. Arthur, O. Mascaró, Y. Fernández-Torquemada, M. Pérez, C.M. Duarte, and J. Romero. 2016. Response of seagrass indicators to shifts in environmental stressors: a global review and management synthesis. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2015.12.007.

    Article  Google Scholar 

  • Schoenbaechler, C., C.G. Guthrie, and Q. Lu. 2011. Coastal hydrology for the Laguna Madre estuary, with emphasis on the Lower Laguna Madre. Austin, TX: Texas Water Development Board.

    Google Scholar 

  • Short, F.T. 1987. Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment. Aquatic Botany. https://doi.org/10.1016/0304-3770(87)90085-4.

    Article  Google Scholar 

  • Short, F.T., and C.P. McRoy. 1984. Nitrogen uptake by leaves and roots of the seagrass Zostera marina L. Botanica Marina. https://doi.org/10.1515/botm.1984.27.12.547.

    Article  Google Scholar 

  • Stanca, E., and M.L. Parsons. 2021. Examining the dynamic nature of epiphytic microalgae in the Florida Keys: what factors influence community composition? Journal of Experimental Marine Biology and Ecology. https://doi.org/10.1016/j.jembe.2021.151538.

    Article  Google Scholar 

  • Texas Department of Water Resources. 1983. Laguna Madre Estuary: a study of the influence of freshwater inflows. LP-182. Austin, TX: Texas Department of Water Resources.

    Google Scholar 

  • Touchette, B.W., and J.M. Burkholder. 2000a. Review of nitrogen and phosphorus metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology. https://doi.org/10.1016/S0022-0981(00)00195-7.

    Article  Google Scholar 

  • Touchette, B.W., and J.M. Burkholder. 2000b. Overview of the physiological ecology of carbon metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology 250 (1): 169–205. https://doi.org/10.1016/S0022-0981(00)00196-9.

    Article  CAS  Google Scholar 

  • Unkovich, M. 2013. Isotope discrimination provides new insight into biological nitrogen fixation. New Phytologist. https://doi.org/10.1111/nph.12227.

    Article  Google Scholar 

  • Walter, R.K., E.J. Rainville, and J.K. O’Leary. 2018. Hydrodynamics in a shallow seasonally low-inflow estuary following eelgrass collapse. Estuarine, Coastal and Shelf Science. https://doi.org/10.1016/j.ecss.2018.08.026.

    Article  Google Scholar 

  • Welsh, D.T. 2000. Nitrogen fixation in seagrass meadows: regulation, plant–bacteria interactions and significance to primary productivity. Ecology Letters. https://doi.org/10.1046/j.1461-0248.2000.00111.x.

    Article  Google Scholar 

  • Wetz, M.W., E. K. Cira, B. Sterba-Boatwright, P. A. Montagna, T.A. Palmer, and K. C. Hayes. 2017. Exceptionally high organic nitrogen concentrations in a semi-arid South Texas estuary susceptible to brown tide blooms. Estuarine, Coastal and Shelf Science 188: 27–37. http://dx.doi.org/10.1016/j.ecss.2017.02.001

  • Williams, S.L. 1990. Experimental studies of Caribbean seagrass bed development. Ecological Monographs 60 (4): 449–469.

    Article  Google Scholar 

  • Wilson, S.S., and K.H. Dunton. 2017. Hypersalinity during regional drought drives mass mortality of the seagrass Syringodium filiforme in a subtropical lagoon. Estuaries and Coasts. https://doi.org/10.1007/s12237-017-0319-x.

    Article  Google Scholar 

  • Wilson, S.S., B.T. Furman, M.O. Hall, and J.W. Fourqurean. 2020. Assessment of Hurricane Irma impacts on South Florida seagrass communities using long-term monitoring programs. Estuaries and Coasts 43: 1119–1132. https://doi.org/10.1007/s12237-019-00623-0.

    Article  CAS  Google Scholar 

  • Withers, K., B.R. Chapman, J.W. Tunnell Jr., and F.W. Judd. 2023. The Laguna Madre of Texas and Tamaulipas. College Station, TX: Texas A&M University Press.

    Google Scholar 

  • Xue, D., J. Botte, B. De Baets, F. Accoe, A. Nestler, P. Taylor, O. Van Cleemput, M. Berglund, and P. Boeckx. 2009. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Research. https://doi.org/10.1016/j.watres.2008.12.048.

    Article  Google Scholar 

  • Yamamuro, M., H. Kayanne, and H. Yamano. 2003. δ15N of seagrass leaves for monitoring anthropogenic nutrient increases in coral reef ecosystems. Marine Pollution Bulletin. https://doi.org/10.1016/S0025-326X(02)00463-0.

    Article  Google Scholar 

  • Zerkle, A.L., C.K. Junium, D.E. Canfield, and C.H. House. 2008. Production of 15N-depleted biomass during cyanobacterial N2-fixation at high Fe concentrations. Journal of Geophysical Research. https://doi.org/10.1029/2007JG000651.

    Article  Google Scholar 

Download references

Acknowledgements

This work would not have been possible without the tireless field efforts of V. Congdon, K. Darnell, F. Ernst, K. Jackson, S. Wilson, L. Young and numerous UTMSI undergraduate and graduate students. T. Whiteaker and S. Schonberg contributed to early GIS mapping efforts that were nicely supplemented by V. Congdon. We are very grateful to K. Capistrant-Fossa who provided the updated graphics for this manuscript. We thank R. Hladyniuk and P. Garlough of the UTMSI Core Lab and the UC Davis stable isotope facility for their support in processing samples.

Funding

This work received continued funding support provided by the General Land Office (GLO) for our work in the Lower Laguna Madre on GLO contracts 12-166-000-4960, 15-035-000-8379, 18-083-000-A592, and 18-097-000-A606.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meaghan R. Cuddy.

Additional information

Communicated by Jill A. Olin

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuddy, M.R., Dunton, K.H. Seagrass Isoscapes and Stoichioscapes Reveal Linkages to Inorganic Nitrogen Sources in the Lower Laguna Madre, Western Gulf of Mexico. Estuaries and Coasts 46, 2115–2127 (2023). https://doi.org/10.1007/s12237-023-01206-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-023-01206-w

Keywords

Navigation