Skip to main content
Log in

Spectroscopic investigation and thermal behavior of new carbonyl complexes [M(CO)4(N—N)(CuX)], (M = W, Mo; N—N = 2,2′-bipyridine, 1,10-phenanthroline; X = Cl, SCN)

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

[M(CO)4(N—N)] reacts with CuCl to give new heterobimetallic metal carbonyls of the type [M(CO)4(N—N)(CuCl)], M = W, Mo; N—N = 2,2′-bipyridine (bipy), 1,10-phenanthroline (phen). Reactions of [M(CO)4(N—N)(CuCl)] with NaSCN produced the series of complexes of general formula [M(CO)4(N—N)(CuSCN)]. The i.r. spectral of all the bimetallic carbonyls exhibited the general four ν (CO) band patterns of the precursors. The u.v.–vis. spectral data for precursors and products showed bands associated with ππ* (nitrogen ligands), d→d (intrametal), as well as MLCT d→π* (nitrogen ligands) and MLCT d → π*(CO) transitions. The [M(CO)4(N—N)(CuX)] (X = Cl, SCN) emission spectra showed only one band associated with the MLCT transition. The t.g. curves revealed a stepwise loss of CO groups. The initial decomposition temperatures of the [M(CO)4(N—N)(CuX)] series suggest that the bimetallic compounds are indeed thermally less stable than their precursors, and the X-ray data showed the formation of MO3, CuMO4, Cu2O and CuO as final decomposition products, M = W, Mo. The spectroscopic data suggests that the heterobimetallic compounds are polymeric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Hirsivaara, L. Guerricabeita, M. Haukka, P. Suomalainen, R.H. Laitinen, T.A. Pakkanen and J. Pursiainen, Inorg. Chim. Acta, 307, 56 (2000).

    Google Scholar 

  2. H.K. Reinus, R.H. Laitinen, A.O.I. Karause and J. Pursianen, Catal. Lett., 60, 65 (1999).

    Google Scholar 

  3. L.F. Tang, Z.H. Wang, J.F. Chai, X.B. Leng, J.T. Wang and H.G. Wang, J. Organometal. Chem., 642, 179 (2002).

    Google Scholar 

  4. S.R. Marder, in D.W. Bruce and D. O'Hare (Ed.), Inorganic Materials, Wiley, New York, 1992.

    Google Scholar 

  5. R. Alberto, R. Schibli, R. Waibel, U. Abram and P.A. Schubiger, Coord. Chem. Rev., 192, 901 (1999).

    Google Scholar 

  6. B.T. Szymanska, T. Glowiak and I. Czelusniak, J. Organometal. Chem., 640, 72 (2001).

    Google Scholar 

  7. H.Z. Lui, M.J. Calhorda, V. Felix and M.G.B. Drew, J. Organometal. Chem., 632, 175 (2001).

    Google Scholar 

  8. C.L. Berstrom and R.T. Luck, Inorg. Chim. Acta, 318, 77 (2001).

    Google Scholar 

  9. P.S. Haddad, A.E. Mauro, V.M. Nogueira, G. Miranda and S.R. Ananias, J. Braz. Chem. Soc., 11, 419 (2000).

    Google Scholar 

  10. T.L. Brown and K.J. Lee, Coord. Chem. Rev., 128, 89 (1993).

    Google Scholar 

  11. W. Hieber and F. Muhlbauer, Z. Anorg. Allg. Chem., 221, 337 (1935).

    Google Scholar 

  12. A.J. Lees, Coord. Chem. Rev., 177, 3 (1998).

    Google Scholar 

  13. K.B. Reddy and K.R. Eldi, Organometallics, 9, 1418 (1990).

    Google Scholar 

  14. A.E. Mauro, V.A. Lucca Neto, J.R. Zamian, R.H.A. Santos, J.R. Lechat and M.T.P. Gambardela, J. Organometal. Chem., 484, 13 (1994).

    Google Scholar 

  15. O.L. Casagrande and A.E. Mauro, Polyhedron, 16, 2193 (1997).

    Google Scholar 

  16. R.M.V Assumpão and T. Morita, Manual de Soluções, Reagentes e Solventes, Edgard Blucher, Sao Paulo, 2001.

  17. Powder Diffraction File of the joint Committee on Power Diffraction Standards, International Center of Diffraction Data, Swarthmore, 19081 (1982).

  18. E. Abel, M.A. Bennet and G. Wilkinson, J. Chem. Soc., 2323 (1959).

  19. L.E. Orgel, Inorg Chem., 1, 25 (1963).

    Google Scholar 

  20. J.P. Cornelissen, A.G. Degraaff, J.G. Haasnot and J. Reedijk, Polyhedron, 8, 2313 (1989).

    Google Scholar 

  21. A.E. Mauro, R.H.A. Santos and M.T.P. Gambardella, Polyhedron, 6, 1273 (1987).

    Google Scholar 

  22. C.L. Raston, A.H. White and S.B. Wild, Aust. J. Chem., 26, 1905 (1976).

    Google Scholar 

  23. D.J. Stufkens, Coord. Chem. Rev., 104, 39 (1990).

    Google Scholar 

  24. C. Kutal, Coord. Chem. Rev., 99, 213 (1990).

    Google Scholar 

  25. F.W. Grevels, K. Kerpen, W.E. Klolzbucher, K. Schaffner, R. Goddard, B. Weimann, C. Kayaran and S. Ozkar, Organometallics, 20, 4775 (2001).

    Google Scholar 

  26. T.S.A. Hor and L.T. Phang, Thermochim. Acta, 178, 287 (1991).

    Google Scholar 

  27. T.S.A. Hor and H.S.O. Chan, Inorg. Chim. Acta, 160, 53 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haddad, P.S., Mauro, A.E., Nogueira, V.M. et al. Spectroscopic investigation and thermal behavior of new carbonyl complexes [M(CO)4(N—N)(CuX)], (M = W, Mo; N—N = 2,2′-bipyridine, 1,10-phenanthroline; X = Cl, SCN). Transition Metal Chemistry 28, 899–904 (2003). https://doi.org/10.1023/A:1026332111423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026332111423

Keywords

Navigation