Skip to main content
Log in

Doping and defect association in oxides for use in oxygen sensors

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Oxygen sensors provide valuable information for improving the efficiency of, and thus reducing harmful emissions from, combustion processes, such as in internal combustion engines. Oxide materials can be used in different ways to generate an oxygen partial pressure dependent output. The type of sensor in which a particular oxide is used depends on the ionic and electronic defects in the oxide, which can be, to some extent, controlled by doping. In this paper, the issues in selection of an oxide for use in resistive-type, potentiometric-type and amperometric-type oxygen sensors are reviewed. Prototypical examples of materials, specifically titania and zirconia, commonly used in these sensors are discussed to illustrate the effects of doping and defect interaction on the electrolytic and transport properties of oxide materials for use in oxygen sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. MÜller, G. KrÖtz and J. Schalk, Phys. Stat. Sol. (a) 185(1) (2001) 1.

    Google Scholar 

  2. W. J. Flemming, IEEE Sensors J. 1(4) (2001) 296.

    Google Scholar 

  3. J. Riegel, H. Neumann and H.-M. Wiedenmann, Sol. St. Ionics 152–153 (2002) 783.

    Google Scholar 

  4. J. Zosel, F. de BLAUWE and U. Guth, Adv. Eng. Mater. 3(10) (2001) 797.

    Google Scholar 

  5. E. L. Brosha, R. Mukundan, D. R. Brown, F. H. Garzon and J. H. Visser, Sol. St. Ionics 148 (2002) 61.

    Google Scholar 

  6. R. Mukundan, E. L. Brosha and F. H. Garzon, in “Ceramic Transactions (Chemical Sensors for Hostile Environments),” Vol. 130, edited by G. M. Kale, S. A. Akbar and M. Liu (The American Ceramic Society, Westerville, OH, 2002) p. 1.

    Google Scholar 

  7. A. M. Azad, L. B. Younkman, S. A. Akbar, S. Ahmed and G. Rizzoni, in “Ceramic Transactions (Role of Ceramics in Advanced Electrochemical Systems),” Vol. 65, edited by P. N. Kumta, G. S. Rohrer and U. Balachandran (The American Ceramic Society, Westerville, OH, 1996) p. 343.

    Google Scholar 

  8. N. Guillet, R. Lalauze, J.-P. Viricelle, C. Pijolat and L. Montanaro, Mater. Sci. Eng. C 21 (2002) 97.

    Google Scholar 

  9. C. Pijolat, C. Pupier, M. Sauvan, G. Tournier and R. Lalauze, Sensors and Actuators B 59 (1999) 195.

    Google Scholar 

  10. T. Schulte, R. Waser, E. W. J. RÖmer, H. J. M. Bouwmeester, U. Nigge and H.-D. WiemhÖfer, J. Eur. Ceram. Soc. 21 (2001) 1971.

    Google Scholar 

  11. S. A. Akbar, C. C. Wang, L. Wang and D. J. Collins, in “Ceramic Transactions (Role of Ceramics in Advanced Electrochemical Systems),” Vol. 65, edited by P. N. Kumta, G. S. Rohrer and U. Balachandran (The American Ceramic Society, Westerville, OH, 1996) p. 331.

    Google Scholar 

  12. I. Simon and M. Arndt, Sensors and Actuators A 97/98 (2002) 104.

    Google Scholar 

  13. A. D. Brailsford, M. Yussouff, E. M. Logothetis, T. Wang and R. E. Soltis, ibid. 42 (1997) 15.

    Google Scholar 

  14. A. D. Brailsford, M. Yussouff and E. M. Logothetis, ibid. 44 (1997) 321.

    Google Scholar 

  15. N. Docquier and S. Candel, Prog. Energy Combustion Sci. 28 (2002) 107.

    Google Scholar 

  16. H. Kubler, Wood and Fiber Sci. 24(2) (1992) 141.

    Google Scholar 

  17. T. Takeuchi, Sensors and Actuators B 14 (1988) 109.

    Google Scholar 

  18. A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld and K. S. Goto, J. Electrochem. Soc. 139(12) (1992) 3690.

    Google Scholar 

  19. J. R. Stetter, W. R. Penrose and S. Yao, ibid. 150(2) (2003) S11.

    Google Scholar 

  20. N. Yamazoe and N. Miura, Sensors and Actuators B 20 (1994) 95.

    Google Scholar 

  21. P. Kofstad, “Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides,” edited by Robert E. Krieger (Publishing Co., Malabar, FL, 1983).

    Google Scholar 

  22. J. Schoonman, in “CRC Handbook of Solid State Electrochemistry,” edited by P. J. Gellings and H. J. M. Bouwmeester (CRC Press, Boca Raton, FL, 1997) p. 161.

    Google Scholar 

  23. R. A. Huggins, Sol. St. Ionics 143 (2001) 3.

    Google Scholar 

  24. C. C. Wang, S. A. Akbar and M. J. Madou, J. Electroceram.2(4) (1998) 273.

    Google Scholar 

  25. V. Lantto, T. T. Rantala and T. S. Rantala, J. Eur. Ceram. Soc. 21 (2001) 1961.

    Google Scholar 

  26. R. K. Sharma, M. C. Bhatnagar and G. L. Sharma, Sensors and Actuators B 45 (1997) 209.

    Google Scholar 

  27. Y. Li, K. Galatsis, W. Wlodarski, M. Ghantasala, S. Russo, J. Gorman, S. Santucci and M. Passacantando, J. Vac. Sci. Tech. A 19(3) (2001) 904.

    Google Scholar 

  28. K. Zakrzewska, M. Radecka and M. ReĘkas, Thin Solid Films 310 (1997) 161.

    Google Scholar 

  29. R. K. Sharma and M. C. Bhatnagar, Sensors and Actuators B 56 (1999) 215.

    Google Scholar 

  30. S. Hasegawa, Y. Sasaki and S. Matsuhara, ibid. 13/14 (1993) 509.

    Google Scholar 

  31. M. Z. Atashbar, H. T. Sun, B. Gong, W. Wlodarski and R. Lamb, Thin Solid Films 326 (1998) 238.

    Google Scholar 

  32. N. Nicoloso, Ber. Bunsen-Ger. Phys. Chem. 94 (1990) 731.

    Google Scholar 

  33. M. L. Frank, M. D. Fulkerson, B. R. Patton and P. K. Dutta, Sensors and Actuators B 87 (2002) 471.

    Google Scholar 

  34. J. Huusko, V. Lantto and H. Torvela, ibid. 15/16 (1993) 245.

    Google Scholar 

  35. G. S. Henshaw, L. Morris, L. J. Gellman and D. E. Williams, J. Mater. Chem. 6(12) (1996) 1883.

    Google Scholar 

  36. V. Dusastre and D. E. Williams, ibid. 9(1999) 445.

    Google Scholar 

  37. Y. Li, W. Wlodarski, K. Galatsis, S. H. Moslih, J. Cole, S. Russo and N. Rockelmann, Sensors and Actuators B 83 (2002) 160.

    Google Scholar 

  38. R. Zanoni, G. Righini, A. Montenero, G. Gnappi, G. Montesperelli, E. Traversa and G. Gusmano, Surf. Int. Anal. 22 (1994) 376.

    Google Scholar 

  39. L. Zheng, Sensors and Actuators B 88 (2003) 115.

    Google Scholar 

  40. T. Hurlen, Acta Chem. Scand. 13(2) (1959) 365.

    Google Scholar 

  41. A. von Hippel, J. Kalnajs and W. B. Westphal, J. Phys. Chem. Solids 23 (1962) 779.

    Google Scholar 

  42. F. A. Grant, Rev. Mod. Phys. 31(3) (1959) 646.

    Google Scholar 

  43. F. Millot, M.-G. Blanchin, R. T Étot, J.-F. Marucco, B. Poumellec, C. Picard and B. Touzelin, Prog. Sol. St. Chem. 17 (1985) 263.

    Google Scholar 

  44. H. P. R. Frederikse, J. Appl. Phys. 32(10 Suppl) (1961) 2211.

    Google Scholar 

  45. A. Atkinson, in “Adv. Ceram.: Nonstoichiometric Compounds,” Vol. 23, edited by C. R. A. Catlow and W. C. Mackrodt (The American Ceramic Soc., Westerville, OH, 1987) p. 3.

    Google Scholar 

  46. H. O. Finklea, in “Semiconductor Electrodes,” edited by H. O. Finklea (Elsevier, Amsterdam, 1988) p. 43.

    Google Scholar 

  47. J. B. Goodenough, Prog. Solid State Chem. 5 (1971) 149.

    Google Scholar 

  48. H. J. Matzke, in “Nonstoichiometric Oxides,” edited by O. Toft Sørensen (Academic Press, New York, NY, 1981) p. 155.

    Google Scholar 

  49. D. M. Smyth, Prog. Sol. St. Chem. 15 (1984) 145.

    Google Scholar 

  50. C. R. A. Catlow, R. James and M. J. Norgett, J. Phys. (Paris) Colloq. C7 (1976) 443.

    Google Scholar 

  51. C. R. A. Catlow and R. James, Proc. Royal Soc. London A 384 (1982) 157.

    Google Scholar 

  52. H. Sawatari, E. Iguchi and R. J. D. Tilley, J. Phys. Chem. Solids 43(12) (1982) 1147.

    Google Scholar 

  53. M. Aono and R. R. Hasiguti, Phys. Rev. B 48(17) (1993) 12406.

    Google Scholar 

  54. G. Levin and C. J. Rosa, Z. Metallkde. 70(10) (1979) 646.

    Google Scholar 

  55. N. Yu and J. W. Halley, Phys. Rev. B 51(8) (1995) 4768.

    Google Scholar 

  56. C. Meis and J. L. FLECHE, Sol. St. Ionics 101–103 (1997) 333.

    Google Scholar 

  57. A. N. Cormack, C. M. Freeman, C. R. A. Catlow and R. L. Royle, in “Adv. Ceram.: Nonstoichiometric Compounds,” Vol. 23 edited by C. R. A. Catlow and W. C. Mackrodt (The American Ceramic Soc., Westerville, OH, 1987) p. 283.

    Google Scholar 

  58. L. A. Bursill and B. G. Hyde, Prog. Sol. St. Chem. 7 (1972) 177.

    Google Scholar 

  59. R. J. D. Tilley, in “Defect Crystal Chemistry and Its Applications” (Blackie & Son, Glasgow, 1987) p. 194.

    Google Scholar 

  60. M. G. Blanchin and L. A. Bursill, Phys. Stat. Sol. (a) 86 (1984) 101.

    Google Scholar 

  61. M. G. Blanchin, P. Faisant, C. Picard, M. Ezzo and G. Fontaine, ibid. 60 (1980) 357.

    Google Scholar 

  62. S. Andersson, B. CollÉn, G. Kruuse, U. Kuylenstierna, A. MagnÉli, H. Pestmalis and S. Åsbrink, Acta Chem. Scand. 11(10) (1957) 1653.

    Google Scholar 

  63. S. Andersson, B. CollÉn, U. Kuylenstierna and A. MagnÉli, ibid. 11(10) (1957) 1641.

    Google Scholar 

  64. B.-O. Marinder, E. Dorm and M. Seleborg, ibid. 16(2) (1962) 293.

    Google Scholar 

  65. S. Andersson and A. MagnÉli, Naturwissenschaften 42 (1956) 495.

    Google Scholar 

  66. J.-L. Carpentier, A. Lebrun and F. Perdu, J. Phys. Chem. Sol. 50(2) (1989) 145.

    Google Scholar 

  67. E. Tani and J. F. Baumard, J. Sol. St. Chem. 32 (1980) 105.

    Google Scholar 

  68. J. Yahia, Phys. Rev. 130(5) (1963) 1711.

    Google Scholar 

  69. A. Bernasik, M. Radecka, M. RĘkas and M. Sloma, Appl. Surf. Sci. 65/66 (1993) 240.

    Google Scholar 

  70. M. F. Yan and W. W. Rhodes, J. Appl. Phys. 53(12) (1982) 8809.

    Google Scholar 

  71. L. A. Bursill and M. G. Blanchin, J. Phys. Lett. 44 (1983) 165.

    Google Scholar 

  72. L. A. Bursill and S. G. Jun, J. Sol. St. Chem. 51 (1984) 388.

    Google Scholar 

  73. L. A. Bursill, M. G. Blanchin and D. J. Smith, Phil. Mag. A 50(4) (1984) 453.

    Google Scholar 

  74. L. A. Bursill, D. J. Smith and P. J. Lin, J. Sol. St. Chem. 56 (1985) 203.

    Google Scholar 

  75. D. K. Philp and L. A. Bursill, ibid. 10 (1974) 357.

    Google Scholar 

  76. R. M. Gibb and J. S. Anderson, ibid. 4 (1972) 379.

    Google Scholar 

  77. M.-H. Kim, S.-I. Lee, T.-K. Song, H. Park, W. Choi, H.-I. Yoo and T.-G. Park, Korean J. Chem. Eng. 18(6) (2001) 873.

    Google Scholar 

  78. M. Valigi, D. Cordischi, G. Minelli, P. Natale, P. Porta and C. P. Keijzers, J. Sol. St. Chem. 77 (1988) 255.

    Google Scholar 

  79. R. A. Slepetys and P. A. Vaughan, J. Phys. Chem. 73(7) (1969) 2157.

    Google Scholar 

  80. D. C. Sayle, C. R. A. Catlow, M.-A. Perrin and P. Nortier, J. Phys. Chem. Solids 56(6) (1995) 799.

    Google Scholar 

  81. O. Renault, A. V. Tadeev, G. Delabouglise and M. Labeau, Sensors and Actuators B 59 (1999) 260.

    Google Scholar 

  82. Z. A. Ansari, S. G. Ansari, T. Ko and J.-H. Oh, ibid. 87 (2002) 105.

    Google Scholar 

  83. W.-Y. Chung, D.-D. Lee and B.-K. Sohn, Thin Solid Films 221 (1992) 304.

    Google Scholar 

  84. N. Radecka, K. Zakrzewska and M. RĘkas, Sensors and Actuators B 47 (1998) 194.

    Google Scholar 

  85. M. Radecka, PrzewoŹnik and K. Zakrzewska, Thin Solid Films 391 (2001) 247.

    Google Scholar 

  86. R. Moos, W. Menesklou, H.-J. Schreiner and K. H. H ¨ardtl, Sensors and Actuators B 67 (2000) 178.

    Google Scholar 

  87. W. Menesklou, H. J. Schreiner, K. H. HÄrdtl and E. Ivers-TiffÉe, ibid. 59 (1999) 184.

    Google Scholar 

  88. M. L. Post, J. J. Tunney, D. Yang, X. Du and D. L Singleton, ibid. 59 (1999) 190.

    Google Scholar 

  89. L. Xuchen, X. Tingxian and D. Zianghong, ibid. 67 (2000) 24.

    Google Scholar 

  90. T. S. Stefanik and H. L. Tuller, J. Eur. Ceram. Soc. 21 (2001) 1967.

    Google Scholar 

  91. N. Izu, W. Shin and N. Murayama, Sensors and Actuators B 87 (2003) 99.

    Google Scholar 

  92. N. Izu, W. Shin, H. Murayama and S. Kanzaki, ibid. 87 (2003) 95.

    Google Scholar 

  93. K. Kiukkola and C. Wagner, J. Electrochem. Soc. 104(6) (1957) 379.

    Google Scholar 

  94. W. Weppner, Mater. Sci. Eng. B 15 (1992) 48.

    Google Scholar 

  95. N. Yamazoe and N. Miura, J. Electroceram. 2(4) (1998) 243.

    Google Scholar 

  96. A. Dubbe, Sensors and Actuators B 88 (2003) 138.

    Google Scholar 

  97. F. H. Garzon, E. L. Brosha and R. Mukundan, in “Proc. Electrochemical Soc. (High Temperature Materials),” Vol. PV 2002-5, edited by S. Singhal (The Electrochemical Society, Pennington, NJ, 2002) p. 157.

    Google Scholar 

  98. T. H. Etsell and S. N. Flengas, Chem. Rev. 70(3) (1970) 339.

    Google Scholar 

  99. B. C. H. Steele, Mater. Sci. Eng. B 13 (1992) 79.

    Google Scholar 

  100. T. A. Ramanarayanan and W. L. Worrell, Can. Metall. Quart. 13(2) (1974) 325.

    Google Scholar 

  101. J. W. Patterson, E. C. Bogren and R. A. Rapp, J. Electrochem. Soc. 114(7) (1967) 752.

    Google Scholar 

  102. K. R. Sridhar and J. A. Blanchard, Sensors and Actuators B 59 (1999) 60.

    Google Scholar 

  103. W. C. Mackrodt and P. M. Woodrow, J. Amer. Ceram. Soc. 69(3) (1986) 277.

    Google Scholar 

  104. A. Dwivedi and A. N. Cormack, Phil. Mag. A 61(1) (1990) 1.

    Google Scholar 

  105. P. J. Botha, J. C. H. Chiang, J. D. Comins, P. M. Mjwara and P. E. Ngoepe, J. Appl. Phys. 73(11) (1993) 7268.

    Google Scholar 

  106. J. A. Kilner and B. C. H. Steele, in “Nonstoichiometric Oxides,” edited by O. T. Sørensen (Academic Press, NewYork, NY, 1981) p. 233.

    Google Scholar 

  107. J. Kondoh, H. Shiota, S. Kikuchi, Y. Tomii, Y. Ito and K. Kawachi, J. Electrochem. Soc. 149(2) (2002) J59.

    Google Scholar 

  108. J.-H. Lee, S. M. Yoon, B.-K. Kim, J. Kim, H.-W. Lee and H.-S. Song, Sol. St. Ionics 144 (2001) 175.

    Google Scholar 

  109. K. Nomura, Y. Mizutani, M. Kawai, Y. Nakamura and O. Yamamoto, ibid. 132 (2000) 235.

    Google Scholar 

  110. D. W. Strickler and W. G. Carlson, J. Amer. Ceram. Soc. 47(3) (1964) 122.

    Google Scholar 

  111. J. M. Dixon, L. D. Lagrange, U. Merten, C. F. Miller and J. T. Porter, II, J. Electrochem. Soc. 110(4) (1963) 276.

    Google Scholar 

  112. J. P. Goff, W. Hayes, S. Hull, M. T. Hutchings and K. N. Clausen, Phys. Rev. B 59(22) (1999) 14202.

    Google Scholar 

  113. A. N. Cormack, Mater. Sci. Forum 7 (1986) 177.

    Google Scholar 

  114. C.-K. Loong, J. W. Richardson, Jr., M. Ozawa and M. Kimura, J. Alloys and Compounds 207/208 (1994) 174.

    Google Scholar 

  115. C. R. A. Catlow, A. V. Chadwick, G. N. Greaves and L. M. Moroney, J. Amer. Ceram. Soc. 69(3) (1986) 272.

    Google Scholar 

  116. W. L. Roth, R. Wong, A. I. Goldman, E. Canova, Y. H. Kao and B. Dunn, Sol. St. Ionics 18/19 (1986) 1115.

    Google Scholar 

  117. M. Cole, C. R. A. Catlow and J. P. Dragun, J. Phys. Chem. Solids 51(6) (1990) 507.

    Google Scholar 

  118. P. Li, I.-W. Chen and J. E. Penner-Hahn, Phys. Rev. B 48(14) (1993) 10074.

    Google Scholar 

  119. Idem., J. Amer. Ceram. Soc. 77(1) (1994) 118.

    Google Scholar 

  120. M. H. Tuilier, J. Dexpert-Ghys, H. Dexpert and P. Lagarde, J. Sol. St. Chem. 69 (1987) 153.

    Google Scholar 

  121. A. Bogicevic, C. Wolverton, G. M. Crosbie and E. B. Stechel, Phys. Rev. B 64 (2001) 14106–1.

    Google Scholar 

  122. A. Bogicevic and C. Wolverton, Europhys. Lett. 56(3) (2001) 393.

    Google Scholar 

  123. F. Shimojo, T. Okabe, F. Tachibana, M. Kobayashi and H. Okazaki, J. Phys. Soc. Jap. 61(8) (1992) 2848.

    Google Scholar 

  124. X. Li and B. Hafskjold, J. Phys: Condens. Matter 7 (1995) 1255.

    Google Scholar 

  125. M. O. Zacata, L. Minervini, D. J. Bradfield, R. W. Grimes and K. E. Sickafus, Sol. St. Ionics 128 (2000) 243.

    Google Scholar 

  126. M. S. Khan, M. S. Islam and D. R. Bates, J. Mater. Chem. 8(10) (1998) 2299.

    Google Scholar 

  127. R. D. Shannon, Acta Cryst. A 32 (1976) 751.

    Google Scholar 

  128. P. J. Chaba and P. E. Ngoepe, in “Mater. Res. Symp. Proc. (Solid-State Chemistry of Inorganic Materials),” Vol. 453, edited by P. K. Davis, A. J. Jacobson, C. C. Torardi and T. A. Vanderah (Mater. Res. Soc., Pittsburgh, PA, 1997) p. 549.

    Google Scholar 

  129. H. A. Johansen and J. G. Cleary, J. Electrochem. Soc. 111(1) (1964) 100.

    Google Scholar 

  130. M. Ohta, J. K. Wigmore, K. Nobugai and T. Miyasato, Phys. Rev. B 65 (2002) 174108–1.

    Google Scholar 

  131. S. P. S. Badwal, F. T. Ciacchi and D. Milosevic, Sol. St. Ionics 136/137 (2000) 91.

    Google Scholar 

  132. Z. Wang, Z. Q. Chen, S. J. Wang and X. Guo, J. Mater. Sci. Lett. 19 (2000) 1275.

    Google Scholar 

  133. Z. Wang, Z. Q. Chen, J. Zhu, S. J. Wang and X. Guo, Rad. Phys. Chem. 58 (2000) 697.

    Google Scholar 

  134. X. Guo, Phys. Stat. Sol. (a) 183(2) (2001) 261.

    Google Scholar 

  135. A. P. Sellars and B. C. H. Steele, Mater. Sci. Forum 34–36 (1988) 255.

    Google Scholar 

  136. D. K. Hohnke, J. Phys. Chem. Solids 41 (1980) 777.

    Google Scholar 

  137. L. J. Gauckler and K. Sasaki, Sol. St. Ionics 75 (1995) 203.

    Google Scholar 

  138. A. A. E. Hassan, N. H. Menzler, G. Blass, M. E. Ali, H. P. Buchkremer and D. StÖver, J. Mater. Sci. 37 (2002) 3467.

    Google Scholar 

  139. H.-Y. Lu and S.-Y. Chen, ibid. 27 (1992) 4791.

    Google Scholar 

  140. A. J. Burggraaf, B. A. Boukamp, I. C. Vinke and K. J. de Vries, Adv. Solid-State Chem. 1 (1989) 259.

    Google Scholar 

  141. G. Alberti, A. Carbone and R. Palombari, Sensors and Actuators B 86 (2002) 150.

    Google Scholar 

  142. B. K. Narayanan, S. A. Akbar and P. K. Dutta, ibid. 87 (2002) 480.

    Google Scholar 

  143. J. W. Fergus, ibid. 42 (1997) 119.

    Google Scholar 

  144. A. Dutta, N. Kaabbuathong, M. L. Grilli, E. di Bartolomeo and E. Traversa, J. Electrochem. Soc. 150(2) (2003) H33.

    Google Scholar 

  145. T. Bak, J. Nowotny, M. ReĘkas and C. C. Sorrell, Sol. St. Ionics 152/153 (2002) 823.

    Google Scholar 

  146. D. J. Kubinski, J. H. Visser, R. E. Soltis, M. H. Parsons, K. E. Nietering and S. G. Ejakov, in “Ceramic Transactions (Chemical Sensors for Hostile Environments),” Vol. 130, edited by G. M. Kale, S. A. Akbar and M. Liu (The American Ceramic Society, Westerville, OH, 2002) p. 11.

    Google Scholar 

  147. W. Cao, O.K. Tan, J. S. Pan, W. Zhu and C. V. Gopal Reddy, Mater. Chem. Phys. 75 (2002) 67.

    Google Scholar 

  148. J. H. Kim and G. M. Choi, Sol. St. Ionics 130 (2000) 157.

    Google Scholar 

  149. K. Kobayashi, S. Yamaguchi, T. Higuchi, S. Shin and Y. Iguchi, ibid. 135 (2000) 643.

    Google Scholar 

  150. K. E. Swider and W. L. Worrell, J. Electrochem. Soc. 143(11) (1996) 3706.

    Google Scholar 

  151. D. Skarmoutsos, A. Tsoga, A. Naoumidis and P. Nikolopoulos, Sol. St. Ionics 135 (2000) 439.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fergus, J.W. Doping and defect association in oxides for use in oxygen sensors. Journal of Materials Science 38, 4259–4270 (2003). https://doi.org/10.1023/A:1026318712367

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026318712367

Keywords

Navigation