Skip to main content
Log in

Multiscale modeling of particle-modified polyethylene

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A common practice in toughening of semicrystalline polymers is to blend them with second-phase rubber particles. A toughening mechanism has recently been suggested which considers a layer of transcrystallized material around well-dispersed particles. This layer has a reduced yield strength in certain preferentially oriented directions. A multiscale numerical model is used to investigate the effect of such a specific microstructural morphology on the mechanical behavior of voided systems. A polycrystalline model is used for high density polyethylene (HDPE) matrix material. The basic structural element in this model is a layered two-phase composite inclusion, comprising both a crystalline and an amorphous domain. The averaged fields of an aggregate of composite inclusions, having either a random or a preferential orientation, form the constitutive behavior of the polymeric matrix material. The anisotropy of material with preferential orientations is determined. The particle-dispersed system is described by finite element RVE models, with in each integration point an aggregate of composite inclusions. Transcrystallized orientations are found to have a limited effect on matrix shear yielding and alter the triaxial stress field. An hypothesized, flow-influenced, microstructure is shown to further improve material properties if loaded in the appropriate direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wu, Polymer 26 (1985) 1855.

    Google Scholar 

  2. R. J. M. Borggreve, R. J. Gaymans, J. Schuijer and J. F. Ingen Housz, ibid. 28 (1987) 1489.

    Google Scholar 

  3. S. Wu, J. Appl. Polym. Sci. 35 (1988) 549.

    Google Scholar 

  4. A. Margolina and S. Wu, Polymer 29 (1988) 2170.

    Google Scholar 

  5. T. Fukui, Y. Kikuchi and T. Inoue, ibid. 32 (1991) 2367.

    Google Scholar 

  6. K. Dijkstra and G. H. Ten Bolscher, J. Mater. Sci. 29 (1994) 4286.

    Google Scholar 

  7. O. K. MuratoĞlu, A. S. Argon and R. E. Cohen, Polymer 36 (1995) 2143.

    Google Scholar 

  8. Idem., ibid. 36 (1995) 921.

  9. P. A. Tzika, M. C. Boyce and D. M. Parks, J. Mech. Phys. Solids 48 (2000) 1893.

    Google Scholar 

  10. Z. Bartczak, A. S. Argon, R. E. Cohen and M. Weinberg, Polymer 40 (1999) 2331.

    Google Scholar 

  11. Idem., ibid. 40 (1999) 2347.

  12. B. A. G. Schrauwen, L. E. Govaert, G. W. M. Peters and H. E. H. Meijer, Macromol. Symp. 185 (2002) 89.

    Google Scholar 

  13. J. A. W. van Dommelen, W. A. M. Brekelmans and F. P. T. Baaijens, Mech. Mater. 35 (2003) 845.

    Google Scholar 

  14. Idem., Comp. Mater. Sci. 27 (2003) 480.

    Google Scholar 

  15. J. A. W. van Dommelen, D. M. Parks, M. C. Boyce, W. A. M. Brekelmans and F. P. T. Baaijens, J. Mech. Phys. Solids 51 (2003) 519.

    Google Scholar 

  16. C. G'sell and A. Dahoun, Mater. Sci. Eng. A 175 (1994) 183.

  17. A. S. Argon, J. Comput. Aided Mater. Des. 4 (1997) 75.

    Google Scholar 

  18. B. J. Lee, D. M. Parks and S. Ahzi, J. Mech. Phys. Solids 41 (1993) 1651.

    Google Scholar 

  19. E. M. Arruda and M. C. Boyce, ibid. 41 (1993) 389.

    Google Scholar 

  20. D. C. Bassett and A. M. Hodge, Proc. Roy. Soc. London A 377 (1981) 25.

    Google Scholar 

  21. D. C. Bassett, A. M. Hodge and R. H. Olley, ibid. 377 (1981) 39.

    Google Scholar 

  22. Z. Bartczak, A. S. Argon, R. E. Cohen and T. Kowalewski, Polymer 40 (1999) 2367.

    Google Scholar 

  23. B. J. Lee, A. S. Argon, D. M. Parks, S. Ahzi and Z. Bartczak, ibid. 34 (1993) 3555.

    Google Scholar 

  24. HKS. ABAQUS/Standard User's Manual, Version 6.2. Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, Rhode Island, USA (2001).

    Google Scholar 

  25. J. A. W. van Dommelen, D. M. Parks, M. C. Boyce, W. A.M. Brekelmans and F. P. T. Baaijens, in Proceedings of the European Conference on Computational Mechanics, Cracow, Poland, 2001.

  26. A. Keller and S. Sawada, Makromol. Chem. 74 (1964) 190.

    Google Scholar 

  27. S. Gautam, S. Balijepalli and G. C. Rutledge, Macromolecules 33 (2000) 9136.

    Google Scholar 

  28. R. J. M. Smit, W. A. M. Brekelmans and H. E. H. Meijer, J. Mech. Phys. Solids 47 (1999) 201.

    Google Scholar 

  29. S. Socrate and M. C. Boyce, ibid. 48 (2000) 233.

    Google Scholar 

  30. R. J. M. Smit, W. A. M. Brekelmans and H. E. H. Meijer, Comput. Methods Appl. Mech. Eng. 155 (1998) 181.

    Google Scholar 

  31. R. Hall, J. Mater. Sci. 26 (1991) 5631.

    Google Scholar 

  32. V. Tvergaard, J. Mech. Phys. Solids 44 (1996) 1237.

    Google Scholar 

  33. Idem., Internat. J. Solids Struct. 30 (1998) 3989.

    Google Scholar 

  34. H.-H. Kausch, R. Gensler, CH. Grein, C. J. G. Plummer and P. Scaramuzzino, J. Macromol. Sci. Phys. B38 (1999) 803.

    Google Scholar 

  35. G. H. Michler and R. Godehardt, Cryst. Res. Technol. 35 (2000) 863.

    Google Scholar 

  36. I. Narisawa and M. Ishikawa, Crazing in Semicrystalline Thermoplastics, Vol. 91/92 of Adv. Polym. Sci. (Springer-Verlag, Berlin, 1990) p. 353.

    Google Scholar 

  37. S. J. Pan, J. Im, M. J. Hill, A. Keller, A. Hiltner and E. Baer, J. Polym. Sci.; Part B: Polym. Phys. 28 (1990) 1105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dommelen, J.A.W., Brekelmans, W.A.M. & Baaijens, F.P.T. Multiscale modeling of particle-modified polyethylene. Journal of Materials Science 38, 4393–4405 (2003). https://doi.org/10.1023/A:1026307821453

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026307821453

Keywords

Navigation