Skip to main content
Log in

Surface modification of a porous hydroxyapatite to promote bonded polymer coatings

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Porous hydroxyapatite (Hap) blocks were sintered at several temperatures and methyl methacrylate (MMA) grafted onto the surface in a 2-step heterogeneous system as a model example for surface modification. First, sintered porous Hap was modified with 2-methacryloyloxyethylene isocyanate (MOI) monomer in anhydrous dimethyl sulfoxide using di-n-butyltin (IV) dilaurate as a catalyst and hydroquinone as an inhibitor. Amount of the introduction of MOI monomer on porous Hap was 1.62 wt % at sintered temperature 800 °C, 0.68 wt % at it of 1000 °C, and 0.59 wt % at it of 1200 °C. Scanning electron microscopy (SEM) showed that porous Hap pore size and shape before and after MOI treatment were unchanged. Second, graft polymerization with MMA through the vinyl bond on porous Hap was conducted using α,α′-azobis isobutyronitrile (AIBN) as an initiator. Amount of Grafted PMMA on the MOI modified porous Hap was 2.84 wt % at sintered temperature of 800 °C, 6.97 wt % at it of 1000 °C, and 6.27 wt % at it of 1200 °C. MOI-modified and PMMA-grafted porous Hap were characterized using Fourier transform infrared (FT-IR) spectroscopy. The compressive strength of sintered porous Hap with grafted PMMA increased about 2.7–6.7 times compared to intact porous Hap. This 2-step surface modification on porous Hap is widely applicable to graft polymerization with vinyl polymer and conjugation with a protein or an oligopeptide, such as growth factor or an adhesion molecule, to improve Hap mechanical properties and functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Soten and G. A. Ozin, J. Mater. Chem. 9(3) (1999) 703.

    Google Scholar 

  2. L. C. Chow, J. Ceram. Soc. Japan. 99(10) (1991) 954.

    Google Scholar 

  3. M. Kikuchi, S. Itoh, S. Ichinose, K. Shinomiya and J. Tanaka, Biomaterials 22 (2001) 1705.

    Google Scholar 

  4. D. Walsh and S. Mann, in “Handbook of Biomimetics”, vol. S6, edited by Y. Osada (NTS Inc., Tokyo, Japan, 2000) 59, Chapter 1.

    Google Scholar 

  5. D. Walsh, T. Furuzono and J. Tanaka, Biomaterials 22 (2001) 1205.

    Google Scholar 

  6. P. Ylinen, M. Raekallio, T. Toivonen, K. Vihtonen and S. Vainonpaa, J. Oral Maxillofac. Surg. 49 (1991) 1191.

    Google Scholar 

  7. R. W. Bucholz, A. Carlto and R. Holmes, Clin. Orthop. 240 (1989) 53.

    Google Scholar 

  8. T. M. Chu, D. G. Orton, S. J. Hollister, S. E. Feinberg and J. W. Halloran, Biomaterials 23(5) (2002) 1283.

    Google Scholar 

  9. S. Joschek, B. Nies, R. Krotz and A. Goferich, ibid. 21(16) (2000) 1645.

    Google Scholar 

  10. W. J. Bigham, P. Stanley, J. M. Cahill Jr, R. W. Curran and A. C. Perry, Ophthal. Plast. Reconstr. Surg. 15(5) (1999) 317.

    Google Scholar 

  11. B. K. Vaughn, A. V. Lombardi Jr and T. H. Mallory, Semin. Arthoplasty. 2(4) (1991) 309.

    Google Scholar 

  12. G. Jiang and D. Shi, J. Biomed. Mater. Res. 43(1) (1998) 77.

    Google Scholar 

  13. A. M. P. Dupraz, J. R. De Wijn, S. A. T. Van Der Meer and K. De Groot, ibid. 30 (1996) 231.

    Google Scholar 

  14. K. Nishizawa, M. Toriyama, T. Suzuki, Y. Kawamoto, Y. Yokugawa and F. Nagata, Chem. Soc. Jpn. 1 (1995) 63.

    Google Scholar 

  15. J. C. Behiri, M. Braden, S. Khorasani, D. Wiwattanadate and W. Bonfield, in “Bioceramics”, vol. 4, edited by W. Bonfield, G. W. Hastings and K. E. Tanner (Elsevier Science, London, 1991) 301.

    Google Scholar 

  16. D. N. Misra, J. Dent. Res. 12 (1985) 1405.

    Google Scholar 

  17. Q. Liu, J. R. De Wijn, M. Van Toledo, D. Bakker and C. A. Van Blitterswijk, J. Mater. Sci.: Mater. Med. 7 (1996) 551.

    Google Scholar 

  18. V. Delpech and A. Lebugle, Clin. Mater. 5 (1990) 209.

    Google Scholar 

  19. J. Dandurand, V. Delpech, A. Lebugle, A. Lamure and C. Lacabanne, J. Biomed. Mater. Res. 24 (1990) 1377.

    Google Scholar 

  20. Q. Liu, J. R. De Wijn and C. A. Van Blitterswijk, ibid. 40(3) (1998) 490.

    Google Scholar 

  21. R. Labella, M. Braden and S. Deb, Biomaterials 15 (1994) 1197.

    Google Scholar 

  22. L. Yubao, C. P. A. T. Klein, J. De Wijn and S. Van De Meer, J. Mater. Sci.: Mater. Med. 5 (1994) 263.

    Google Scholar 

  23. M. R. Thomas, J. Coat. Technol. 55 (1983) 55.

    Google Scholar 

  24. A. Bayer, Ann. 245 (1888) 103.

    Google Scholar 

  25. H. Meyer, Ber. 28 (1895) 2965.

    Google Scholar 

  26. R. Meyer and E. Hartmann, ibid. 38 (1905) 3956.

    Google Scholar 

  27. T. Furuzono, K. Ishihara, N. Nakabayashi and Y. Tamada, Biomaterials. 21 (2000) 327.

    Google Scholar 

  28. G. T. Hermanson, “Bioconjugate Techniques” (Academic Press, Inc., New York, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Matsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, A., Furuzono, T., Walsh, D. et al. Surface modification of a porous hydroxyapatite to promote bonded polymer coatings. Journal of Materials Science: Materials in Medicine 14, 973–978 (2003). https://doi.org/10.1023/A:1026302700149

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026302700149

Keywords

Navigation