Skip to main content
Log in

Numerical Simulation of SRS of Cylindrical Wave Beams

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

A method for numerical simulation of stimulated Raman scattering of cylindrical wave beams in a nonlinear medium has been developed. The features of the spatial structure formation of interacting wave fields in the regime of conservation of azimuthal angular distributions of amplitudes have been investigated. The radial intensity profiles of diffracting light beams in the near-field zone and their angular spectra in the far-field zone corresponding to different stages of energy exchange in the process of amplification from the noise in the barium nitrate crystal have been calculated. It has been shown that in the field of Bessel beams waveguide structures of the soliton type with a peak intensity of the self-channeling Stokes component significantly exceeding the initial pumping intensity are formed. A comparison of the conversion efficiencies under pumping by Gaussian and Bessel light beams has been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Ingebetouv, J. Opt. Soc. Am., A6, 150-152 (1988).

    Google Scholar 

  2. A. B. Valyaev and S. G. Krivoshlykov, Kvantovaya E?lektron., 16, 1047-1049 (1989).

    Google Scholar 

  3. R. Piestun and J. Shamir, J. Opt. Soc. Am., A15, 3039-3043 (1998).

    Google Scholar 

  4. S. P. Tewary, H. Huang, and R. W. Boyd, Phys. Rev., A54, 2314-2325 (1996).

    Google Scholar 

  5. C. F. R. Caron and R. M. Potvliege, J. Opt. Soc. Am., B16, No. 9, 1377-1384 (1999).

    Google Scholar 

  6. V. N. Belyi, N. S. Kazak, and N. A. Khilo, Kvantovaya E?lektron., 30, No. 9, 753- (2000).

    Google Scholar 

  7. A. Piskarskas, V. Smigevicus, A. Stabinis, and V. Vacicaitis, J. Opt. Soc. Am., B16, 1567-1578 (1999).

    Google Scholar 

  8. L. Niggl and M. Maier, Opt. Commun., 154, 65-69 (1998).

    Google Scholar 

  9. Yu. N. Karamzin, A. P. Sukhorukov, and V. A. Trofimov, Mathematical Modeling in Nonlinear Optics [in Russian], Moscow (1989).

  10. M. Scalora and J. W. Haus, J. Opt. Soc. Am., B8, No. 5, 1003-1012 (1991).

    Google Scholar 

  11. P. R. Battle, J. C. Wessel, and J. L. Carlsten, Phys. Rev., A48, No. 1, 707-716 (1993).

    Google Scholar 

  12. V. N. Belyi, N. A. Khilo, V. A. Orlovich, A. S. Grabtchikov, R. V. Chulkov, and V. A. Lisinetskii, Proc. SPIE, 4751, 389-394 (2002).

    Google Scholar 

  13. A. P. Sukhorukov, Nonlinear Wave Interactions in Optics and Radiophysics [in Russian], Moscow (1989).

  14. I. R. Shen, The Principles of Nonlinear Optics [Russian translation], Moscow (1989).

  15. T. N. Tolstov, Fourier Series [in Russian], Moscow-Leningrad (1951).

  16. C. A. J. Fletcher, Numerical Galerkin Methods [Russian translation], Moscow (1988).

  17. G. Molina-Terriza and L. Torner, J. Opt. Soc. Am., B17, 1197-1203 (2000).

    Google Scholar 

  18. V. I. Krylov, V. V. Bobkov, and P. I. Monastyrnyi, Computational Methods [in Russian], Moscow (1977).

  19. S. Shi and D. W. Prather, Opt. Lett., 24, 1445-1447 (1999).

    Google Scholar 

  20. V. A. Orlovich, W. Kiefer, P. A. Apanasevich, A. A. Buj, A. S. Grabtchikov, A. V. Kachinsky, V. V. Ermolenkov, and S. G. Kruglic, J. Raman Spectrosc., 31, 851-856 (2000).

    Google Scholar 

  21. R. J. Heeman, H. P. Godfried, and W. J. Witteman, Appl. Phys., B60, 479-484 (1995).

    Google Scholar 

  22. B. B. Sevruk, Zh. Prikl. Spektrosk., 68, No. 1, 78-81 (2001).

    Google Scholar 

  23. V. G. Dmitriev and L. V. Tarasov, Applied Nonlinear Optics [in Russian], Moscow (1982).

  24. P. D. Trapani, A. V. Beržanskis, S. Manardini, S. Sapone, and W. Chinaglia, Phys. Rev. Lett., 81, 5133-5136 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevruk, B.B. Numerical Simulation of SRS of Cylindrical Wave Beams. Journal of Applied Spectroscopy 70, 513–521 (2003). https://doi.org/10.1023/A:1026186112013

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026186112013

Navigation