Skip to main content

Abstract

A rigorous three-dimensional electrodynamic model of hybrid electromagnetic oscillations in a “cylindrical to rectangular waveguide” waveguide branch filled with a dielectric is constructed. The eigen types of oscillations are classified into branching eigen resonances at transcendental modes and resonances of the waveguide-dielectric type. For resonances of the first type, electromagnetic field in the communication region of the waveguides is described with the sum of the fields of the damped waves of the partial waveguides, and for resonances of the second type with the sum fields of damped and propagating waves. Oscillations of the first type exist both when the waveguide branching is filled with a dielectric and in empty branching. The second type of resonance exists only in structures with a dielectric constant greater than unity. The structure under study can be used to measure the electrical parameters of dielectric samples. Since, the spectral branching characteristics are mainly determined by the size of the central communication area waveguides and electrical parameters of parts of the dielectric that is located there, the measurements are local in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar, V., Dwivedi, S., Jain, P.K.: Circular sectoral waveguide TM01 to TE11 mode converter. Microwave Opt. Technol. Lett. 61(7), 1697–1701 (2019). https://doi.org/10.1002/mop.31789

    Article  Google Scholar 

  2. Yeap, K.H., Wong, E.V.S., Nisar, H., Lai, K.C., Ng, C.A.: Attenuation in circular and rectangular waveguides. IEEE J. Electromagn. 37(3), 171–184 (2017). https://doi.org/10.1080/02726343.2017.1301198

    Article  Google Scholar 

  3. Ceccuzzi, S., Ponti, C., Ravera, G.L., Schettini, G.: Physical mechanisms and design principles in mode filters for oversized rectangular waveguides. IEEE Trans. Microwave Theory Tech. 65(8), 2726–2733 (2017). https://doi.org/10.1109/TMTT.2017.2684119

    Article  Google Scholar 

  4. Islamov, I.J., Ismibayli, E.G., Gaziyev, Y.G., Ahmadova, S.R., Abdullayev, R.: Modeling of the electromagnetic feld of a rectangular waveguide with side holes. Prog. Electromagn. Res. 81, 127–132 (2019). https://doi.org/10.2528/PIERL19011102

    Article  Google Scholar 

  5. Islamov, I.J., Shukurov, N.M., Abdullayev, R.S., Hashimov, K.K., Khalilov, A.I.: Diffraction of electromagnetic waves of rectangular waveguides with a longitudinal. In: IEEE Conference 2020 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF) (2020). https://doi.org/10.1109/WECONF48837.2020.9131457

  6. Khalilov, A.I., Islamov, I.J., Hunbataliyev, E.Z., Shukurov, N.M., Abdullayev, R.S.: Modeling microwave signals transmitted through a rectangular waveguide. In: IEEE Conference 2020 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF) (2020). https://doi.org/10.1109/WECONF48837.2020.9131525

  7. Rahimzadeh, R.M., Lamecki, A., Sypek, P., Mrozowski, M.: Residue-pole methods for variability analysis of s-parameters of microwave devices with 3d fem and mesh deformation. J. Radio. Eng. 29(1), 10–20 (2020). https://doi.org/10.13164/re.2020.0010

    Article  Google Scholar 

  8. Sun, D.Q., Xu, J.P.: Real time rotatable waveguide twist using contactless stacked air-gapped waveguides. IEEE Microwave Wireless Compon. Lett. 27(3), 215–217 (2017). https://doi.org/10.1109/LMWC.2017.2661881

    Article  Google Scholar 

  9. Li, F., et al.: Design and microwave measurement of a Ka-band HE11 mode corrugated horn for the Faraday rotator. IET Microw. Antennas Propag. 11(1), 75–80 (2017). https://doi.org/10.1049/iet-map.2016.0288

    Article  Google Scholar 

  10. Liu, Z.Q., Sun, D.Q.: Transition from rectangular waveguide to empty substrate integrated gap waveguide. Int. J. Electron. Lett. 55(11), 654–655 (2019). https://doi.org/10.1049/el.2019.1042

    Article  Google Scholar 

  11. Yousefian, M., Hosseini, S.J., Dahmardeh, M.: Compact broadband coaxial to rectangular waveguide transition. J. Electromagn. Waves Appl. 33(9), 1239–1247 (2019). https://doi.org/10.1080/09205071.2019.1606737

    Article  Google Scholar 

  12. Menachem, Z.: A new technique for the analysis of the physical discontinuity in a hollow rectangular waveguide with dielectric inserts of varying profiles. J. Electromagn. Waves Appl. 33(9), 1145–1162 (2019). https://doi.org/10.1080/09205071.2019.1601035

    Article  Google Scholar 

  13. Singh, R.R., Priye, V.: Numerical analysis of film-loaded silicon nanowire optical rectangular waveguide: an effective optical sensing. Micro Nano Lett. 13(9), 1291–1295 (2018). https://doi.org/10.1049/mnl.2018.0140

    Article  Google Scholar 

  14. Taghizadeh, H., Ghobadi, C., Azarm, B., Majidzadeh, M.: Grounded coplanar waveguide-fed compact MIMO antenna for wireless portable applications. Radio. Eng. 28(3), 528–534 (2019). https://doi.org/10.13164/re.2019.0528

    Article  Google Scholar 

  15. Aliev, R.A., Gardashova, L.A.: Z-set based approach to control system design. In: Aliev, R.A., Kacprzyk, J., Pedrycz, W., Jamshidi, Mo., Babanli, M., Sadikoglu, F.M. (eds.) ICAFS 2020. AISC, vol. 1306, pp. 10–21. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64058-3_2

    Chapter  Google Scholar 

  16. Dadasheva, A.N.: Analysis of consistency of pairwise comparison matrix with fuzzy type-2 elements. In: 11th International Conference on Theory and Application of Soft Computing, Computing with Words, Perception and Artificial intelligence ICSCCW 2021 (2021). In press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Islamov, I.J., Hasanov, M.H., Abbasov, M.H. (2022). Simulation of Electrodynamic Processes in the Cylindrical-Rectangular Microwave Waveguide Systems Transmitting Information. In: Aliev, R.A., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Babanli, M., Sadikoglu, F.M. (eds) 11th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions and Artificial Intelligence - ICSCCW-2021. ICSCCW 2021. Lecture Notes in Networks and Systems, vol 362. Springer, Cham. https://doi.org/10.1007/978-3-030-92127-9_35

Download citation

Publish with us

Policies and ethics