Skip to main content
Log in

Kinetics and metabolic specificities of Vero cells in bioreactor cultures with serum-free medium

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to understand the metabolism kinetics of Vero cells grown on microcarriers in bioreactors in serum-free medium (SFM). We sought to determine what nutrients are essential for Vero cells and how they are consumed. Contrary to glucose and to most of the amino acids, glutamine and serine were very quickly depleted in this medium and can be supposed to be responsible for cell apoptosis. Lactate and ammonium ions did not reach toxic levels for Vero cells. We payed more attention to the lactate metabolism. Usually we observed that after about 2 days lactate was consumed in serum-containing media, but its concentration plateaud in SFM. Moreover, the addition of serum in SFM provoked lactate consumption and the rate of glucose and glutamine consumption was twice as high as in the SFM not supplemented with serum. The depletion of glutamine and serine and the metabolic deviations leading to a shortage of intermediate products required for other metabolic pathways probably contribute to the lower cell yield and higher cell death rate in SFM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abercrombie M. and Ambrose E.J. 1962. The surface properties of cancer cells: A review. Cancer Res 22: 525–548.

    PubMed  CAS  Google Scholar 

  • Al-Rubeai M. 1998. Apoptosis and cell culture technology. Adv Biochem Eng Biotechnol 59: 225–249.

    PubMed  CAS  Google Scholar 

  • Bonarius H.P.J., Hatzimanikatis V., Meesters K.P.H., de Gooijer C.D., Schmid G. and Tramper J. 1995. Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechnol Bioeng 50: 299–318.

    Article  Google Scholar 

  • Clark J.M., Gebb C. and Hirtenstein M.D. 1982. Serum supplements and serum-free media: applicability for microcarrier culture of animal cells. Devel Biol Stand 50: 81–91.

    Google Scholar 

  • Cruz J.H., Moreira J.L. and Carrondo M.J.T. 1999. Metabolic shifts by nutrient manipulation in continuous cultures of BHK cells. Biotechnol Bioeng 66: 104–113.

    Article  PubMed  CAS  Google Scholar 

  • Doverskog M., Ljunggren J., Öhaman L. and Häggström L. 1992. Physiology of cultured animal cells. J BioTechnol 59: 103–115.

    Article  Google Scholar 

  • Duval D., Demangel C., Miossec S. and Geahel I. 1992. Role of metabolic waste products in the control of cell proliferation and antibody production by mouse hybridoma cells. Hybridoma 11: 311–322.

    Article  PubMed  CAS  Google Scholar 

  • Europa A.F., Gambhir A., Fu P.G. and Hu W.S. 1999. Multiple steady states with distinct metabolism in continuous culture of mammalian cells. Biotechnol Bioeng 67: 25–34.

    Article  Google Scholar 

  • Fenge C., Klein C., Heuer C., Siegel U. and Fraune E. 1993. Agitation, aeration and perfusion modules for cell culture bioreactors. Cytotechnology 11: 233–244.

    Article  PubMed  CAS  Google Scholar 

  • Glacken M.W. 1988. Catabolic control of mammalian cell culture. Biotechnol 6: 1041–1050.

    Article  CAS  Google Scholar 

  • Gstraunthaler G., Seppi T. and Pfaller W. 1999. Impact of culture conditions, culture media volume, and glucose content on metabolic properties of renal epithelial cell cultures. Cell Physiol Biochem 9: 150–172.

    Article  PubMed  CAS  Google Scholar 

  • Guppy M., Greiner E. and Brand K. 1993. The role of the crabtree effect and endogenous fuel in the energy metabolism of resting and proliferating thymocytes. Eur J Biochem 212: 95–99.

    Article  PubMed  CAS  Google Scholar 

  • Hassel T., Gleave S. and Butler M. 1990. Growth inhibition in animal cell culture. The effect of lactate and ammonia. Appl Biochem Biotechno 30: 29–41.

    Article  Google Scholar 

  • Irani N., Wirth M., Van Den Heuvel J. and Wagner R. 1999. Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction. Biotechnol Bioeng 66: 238–246.

    Article  PubMed  CAS  Google Scholar 

  • Lee G.T-Y. and Engelhardt D.L. 1977. Protein metabolism during growth of Vero cells. J Cell Physiol 92: 293–302.

    Article  PubMed  CAS  Google Scholar 

  • Linz M., Zeng A.P., Wagner R. and Deckwer W.D. 1997. Stoichiometry, kinetics and regulation of glucose and aminoacid metabolism of a recombinant BHK cell line in batch and continuous cultures. Biotechnol Prog 13: 453–463.

    Article  PubMed  CAS  Google Scholar 

  • Mendonça R.Z., Ioshimoto L.M., Mendonça R.M.Z., De-Franco M., Valentini E.J.G., Beçak W. et al. 1993. Preparation of human rabies vaccine in Vero cell culture using a microcarrier system. Braz J Med Biol Res 26: 1305–1317.

    PubMed  Google Scholar 

  • Mendonça R.Z. and Pereira C.A. 1997. Cell metabolism and medium perfusion in Vero cell cultures on microcarriers in a bioreactor. Bioprocess Eng 18: 213–218.

    Article  Google Scholar 

  • Merten O.W., Kierulff J.V., Castignolles N. and Perrin P. 1994. Evaluation of the new serum-free medium (MDSS2) for the production of different biologicals: Use of various cell lines. Cytotechnology 14: 47–59.

    Article  PubMed  CAS  Google Scholar 

  • Montagnon J.B., Vincent-Falquet J.C. and Fanget B. 1984a. Thousand litre scale microcarrier culture of Vero cells for killed polio virus vaccine. Promising results. Devel Biol Stand 55: 37–42.

    Google Scholar 

  • Montagnon J.B., Fanget B. and Vincent-Falquet J.C. 1984b. Industrial-scale production of inactivated poliovirus vaccine prepared by culture of Vero cells on microcarrier. Rev Infect Dis 6: 341–344.

    Google Scholar 

  • Nahapetian A.T., Thomas J.N. and Thilly W.G. 1986. Optimization of environment for high density Vero cell culture: effect of dissolved oxygen and nutrient supply on cell growth and changes in metabolites. J Cell Sci 81: 65–103.

    PubMed  CAS  Google Scholar 

  • Newsholme E.A., Crabtree B. and Ardawi M.S.M. 1985. The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Bioscience Rep 5: 393–400.

    Article  CAS  Google Scholar 

  • Nyberg G.B., Balcarcel R.R., Follstad B.D., Stephanopoulos G. and Wang D.I.C. 1999. Metabolism of peptide amnoacids by Chinese Hamster Ovary cells grown in a complex medium. (tiBiotechnol Bioeng 62: 324–335.

  • Oller A.R., Buser C.W., Tyo M.A. and Thilly W.G. 1989. Growth of mammalian cells at high oxygen concentrations. J Cell Sci 94: 43–49.

    PubMed  Google Scholar 

  • Ozturk S.S., Jorjani P., Taticek R., Lowe B., Shackleford S., Ladehoff-Guiles D. et al. 1997. Kinetics of glucose metabolism and utilization of lactate in mammalian cell cultures. In: Carrondo M.J.T. et al. (eds), Animal Cell Technology. Kluwer Academic Publishers, Netherlands, pp. 355–360.

    Google Scholar 

  • Papaconstantinou H.T., Hwang K.O., Rajaraman S., Hellmich M.R., Townsend C.M. and Ko T.C. 1998. Glutamine deprivation induces apoptosis in intestinal epithelial cells. Surgery 124: 152–160.

    PubMed  CAS  Google Scholar 

  • Pardridge W.M. and Casanello-Ertl D. 1979. Effects of glutamine deprivation on glucose and amino acid metabolism in tissue culture. Am J Physiol 236: 234–238.

    Google Scholar 

  • Philips H.J. 1973. In: Kruse P.F. and Patterson M.K. (eds), Tissue cultures: Methods and Applications. Academic Press, New York, pp. 406–408.

    Google Scholar 

  • Polastri G.D., Friensen H.J. and Mauler R. 1982. Aminoacid utilisation by Vero cells in microcarrier culture. Devel Biol Stand 55: 53–56.

    Google Scholar 

  • Quesney S., Marvel J., Marc A., Gerdil C. and Meignier B. 2001. Characterization of Vero cell growth and death in bioreactor with serum-containing and serum-free media. Cytotechnology 35: 115–125.

    Article  PubMed  CAS  Google Scholar 

  • Sakagami H., Satoh M., Yokote Y., Takano H., Takahama M., Kochi M. et al. 1998. Amino acid utilization during cell growth and apoptosis induction. Anticancer Res 18: 4303–4306.

    PubMed  CAS  Google Scholar 

  • Sandford K.K., Earle W.R., Evans V.J., Waltz H. and Shannon J.E. 1951. The measurement of proliferation in tissue cultures by enumeration of cell nuclei. J Natl Cancer Inst 11: 773–795.

    Google Scholar 

  • Sanfeliu A., Paredes C., Cairo J.J. and Godia F. 1997. Analysis of glucose and glutamine metabolism of hybridoma cells by continuous culture experiments. In: Carrondo M.J.T. et al. (eds), Animal Cell Technology. Kluwer Academic Publishers, Netherlands, pp. 785–789.

    Google Scholar 

  • Van Wezel A.L. 1973. Microcarrier cultures of animals cells. In: Kruse P.F. and Patterson M.K. (eds), Tissue cultures: Methods and Applications. Academic Press, New York, pp. 372–377.

    Google Scholar 

  • Wagner A., Marc A., Engasser J.M. and Einsele A. 1991. Growth and metabolism of human tumor kidney cells on galactose and glucose. Cytotechnology 7: 7–13.

    Article  Google Scholar 

  • Yasumura Y. and Kawakita Y. 1963. Studies on SV40 in tissue culture – Preliminary step for cancer research in vitro. Nihon Rinsho (in Japanese) 21: 1201–1221.

    Google Scholar 

  • Zielke H.R., Zielke C.L. and Ozand P.T. 1984. Glutamine: a major energy source for cultured mammalian cells. Fed Proc 43: 121–125.

    PubMed  CAS  Google Scholar 

  • Zielke H.R., Sumbilla C.M. and Sevdalain D.A. 1980. Lactate: a major product of glutamine metabolism by human diploid fibroblasts. J Cell Physiol 104: 433–441.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quesney, S., Marc, A., Gerdil, C. et al. Kinetics and metabolic specificities of Vero cells in bioreactor cultures with serum-free medium. Cytotechnology 42, 1–11 (2003). https://doi.org/10.1023/A:1026185615650

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026185615650

Navigation