Skip to main content
Log in

Transport Properties of Heavy Fermion Compounds: YbIn1−x Cu4+x and YbIn1−y Ag y Cu4

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The intermetallic compounds of Yb with In and Cu (YbIn1−x Cu4+x ) and Yb with In, Ag, and Cu (YbIn1−y Ag y Cu4) exhibit interesting magnetic and transport properties. Of the compounds of Yb with In and Cu the compound with x=0, namely YbInCu4, has attracted particular attention, because—while being a Curie–Weiss paramagnet—it undergoes a first-order isostructural phase transition at T v =approx. 40 to 80 K and atmospheric pressure. Below T v the ytterbium in this compound is in a mixed-valence state and the compound as a whole is sometimes called a light heavy-fermion system. Above T v , the compound is known as a Curie–Weiss paramagnet of localized magnetic moments and, below T v , a Pauli paramagnet in a nonmagnetic Fermi-liquid state. In the present paper the results of measurements of the thermal conductivity of polycrystalline samples, YbIn1−x Cu4+x with x=0,0.015, 0.095, and 0.17 and YbIn1−y Ag y Cu4 with y=0, 0.3, 0.7, and 1.0, are reported. The thermal conductivity is separated into the phonon thermal conductivity (κ ph ) (i.e., related to the heat carried by phonons) and into the electronic thermal conductivity (κ e ) (related to the heat carried by electrons). The electrical resistivity of the compounds was measured to determine the temperature dependence of the Lorenz number. The results show that in the temperature interval 4.2 to 300 K the latter quantity behavior follows the theoretical predictions for heavy fermion materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. J. L. Sarrao, C. D. Immer, Z. Fisk, C. H. Booth, E. Figueroa, J. M. Lawrence, R. Modler, A. L. Cornelius, M. F. Hundley, G. H. Kwei, J. D. Thompson, and F. Bridges, Phys. Rev. B 59:6855(1999).

    Google Scholar 

  2. C. Rossel, K. N. Yang, M. B. Maple, Z. Fisk, E. Zirngiebl, and J. D. Thompson, Phys. Rev. B 35:1914(1987).

    Google Scholar 

  3. B. Kindler, D. Finsterbusch, R. Graf, F. Ritter, W. Assmus, and B. Lűuthi, Phys. Rev. B 50:704(1994).

    Google Scholar 

  4. J. L. Sarrao, C. D. Immer, C. L. Benton, Z. Fisk, J. M. Lawrence, D. Mandrus, and J. D. Thompson, Phys. Rev. B 54:12 207(1996).

    Google Scholar 

  5. A. Löffert, M. L. Aigner, F. Ritter, and W. Assmus, Cryst. Res. Technol. 34:267(1999).

    Google Scholar 

  6. A. Löffert, S. Hautsch, F. Ritter, and W. Assmus, Phys. B 259:134(1999).

    Google Scholar 

  7. I. Felner, I. Nowik, D. Vakin, U. Potzel, J. Moser, G. M. Kalvius, G. Wortmann, G. Schmiester, G. Hilscher, E. Gratz, C. Schmitzer, N. Pillmayr, K. G. Prasad, H. de Waard, and H. Pinto, Phys. Rev. B 35:6956(1987).

    Google Scholar 

  8. A. L. Cornelius, J. M. Lawrence, J. L. Sarrao, Z. Fisk, M. F. Hundley, G. H. Kwei, J. D. Thompson, C. H. Booth, and F. Bridges, Phys. Rev. B 56:7993(1997).

    Google Scholar 

  9. V. A. Shaburov, A. E. Sovestnov, Yu. P. Smirnov, A. V. Tjunis, and A. V. Golubkov, Fiz. Tverd. Tela. 42:1164(2000).

    Google Scholar 

  10. P. Waibel, M. Grioni, D. Malterre, B. Dardel, Y. Baer, and M. J. Besmus, Z. Phys. B 91:337(1993).

    Google Scholar 

  11. P. Schlottman, J. Appl. Phys. 73:5412(1993).

    Google Scholar 

  12. N. Pillmayr, E. Bauer, and K. Yoshimura, J. Magn. Magn. Mater. 104–107:639(1992).

    Google Scholar 

  13. J. L. Sarrao, C. D. Immer, C. L. Benton, Z. Fisk, J. M. Lawrence, D. Mandrus, and J. D. Thompson, Phys. B 223/224:366(1996)

    Google Scholar 

  14. K. Yoshimura, T. Nitta, T. Shimuzu, M. Mekata, H. Yosuoka, and K. Kosuge, J. Magn. Magn. Mater. 90/91:466(1990).

    Google Scholar 

  15. S. Zherlitsyn, B. Lűuthi, B. Wolf, J. L. Sarrao, Z. Fisk, and V. Zlatic, Phys. Rev. B 60:3148(1999).

    Google Scholar 

  16. T. Bauer, E. Gratz, G. Hutflesz, A. K. Bhattacharjee, and C. Coqblin, Phys. B 186/188:494(1993).

    Google Scholar 

  17. I. A. Smirnov, L. S. Parfen'eva, A. Jeżowski, H. Misiorek, S. Krempel-Hesse, F. Ritter, and W. Assmus, Phys. Solid State 41:1418(1999).

    Google Scholar 

  18. A. V. Golubkov, L. S. Parfen'eva, I. A. Smirnov, H. Misiorek, J. Mucha, and A. Jeżowski, Phys. Solid State 43:218(2001).

    Google Scholar 

  19. A. Jeżowski, J. Mucha, and G. Pompe, J. Phys. D 20:1500(1987).

    Google Scholar 

  20. K. Yoshimura, N. Tsujii, K. Sorada, T. Kawabata, H. Mitamura, T. Goto, and K. Kosuge, Phys. B 281/282:141(2000).

    Google Scholar 

  21. R. Berman, Thermal Conduction in Solids (Clarendon Press, Oxford, 1976).

    Google Scholar 

  22. A. V. Golubkov, L. S. Parfen'eva, I. A. Smirnov, H. Misiorek, J. Mucha, A. Jeżowski, F. Ritter, and W. Assmus, Fiz. Tverd. Tela 44:973(2002).

    Google Scholar 

  23. V. S. Oskotskij and I. A. Smirnov, Defects in Crystals and Thermal Conductivity (Nauka, Leningrad, 1972).

    Google Scholar 

  24. J. M. Lawrence, G. H. Kwei, J. L. Sarrao, Z. Fisk, J. M. Lawrence, D. Mandrus, and J. D. Thompson, Phys. Rev. B 54:6011(1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Misiorek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misiorek, H., Mucha, J., Golubkov, A.V. et al. Transport Properties of Heavy Fermion Compounds: YbIn1−x Cu4+x and YbIn1−y Ag y Cu4 . International Journal of Thermophysics 24, 1415–1426 (2003). https://doi.org/10.1023/A:1026119622141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026119622141

Navigation