Skip to main content
Log in

Experimental Measurements and Theoretical Prediction of the Thermal Conductivity of Two- and Three-Phase Water/Olivine Systems

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal conductivity of olivine, dry and mixed with water, up to saturation, has been measured with a thermal probe, using the step heating method. The olivine is composed of solid particles with dimensions in the range from 0.8 to 1 mm. Dry olivine has been measured in the range of temperatures between −17° to +50°C. Olivine mixed with water has been measured at +50°C. The cubic cell model has been used to make predictions to compare with the measured data. Comparisons of the experimental thermal conductivities and the predicted values of dry and water-mixed olivine show good agreement. The cubic cell model can be used to evaluate the porosity of olivine and the thermal conductivity of the solid particles, from the values measured at dryness and saturation, with reasonably good agreement. In this way, it is not necessary to measure the mineral composition of the particles of the porous media. Also, the porosity of the medium is predicted with reasonable agreement, which takes into account the phenomenon of the porosity increase near the probe, since the diameter of the probe is smaller than that of the solid particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

reference

  1. G. S. Campbell, J. D. Jungbauer, W. R. Bidlake, and R. D. Hungerford, Soil Sci. 158:307(1994).

    Google Scholar 

  2. D. A. de Vries, Physics of Plant Environment, W. R. Van Wijk, ed. (John Wiley, New York, 1963), pp. 210-235.

    Google Scholar 

  3. A. R. Sepaskhah and L. Boersma, Soil Sci. Soc. Am. J. 43:439(1979).

    Google Scholar 

  4. J. W. Hopmans and J. H. Dane, Soil Sci. 142:187(1986).

    Google Scholar 

  5. Y. Hiraiwa and T. Kasubuchi, Eur. J. Soil Sci. 51:211(2000).

    Google Scholar 

  6. F. Gori and M. Pietrafesa, ASME-WAM, HT-7A-5 or HTD, Vol. 179, Fundamental Experimental Measurements in Heat Transfer, D. E. Beasley and J. L. S. Chen, eds., H00663-1991 (Atlanta, Georgia, 1991), pp. 83-89.

  7. F. Gori, C. Marino, and M. Pietrafesa, Int. Commun. Heat Mass 28:1091(2001).

    Google Scholar 

  8. F. Gori and S. Corasaniti, 5th World Conf. Exp. Heat Transfer, Fluid Mechanics Thermodyn. 2:1257(2001).

    Google Scholar 

  9. V. R. Tarnawski, F. Gori, B. Wagner, and G. D. Buchan, Int. J. Energ. Res. 24:403(2000).

    Google Scholar 

  10. V. R. Tarnawski and F. Gori, Int. J. Energ. Res. 26:143(2002).

    Google Scholar 

  11. F. Gori, Proc. Fourth Int. Conf. on Permafrost (Fairbanks, Alaska, 1983), pp. 363-368.

  12. F. Gori, Proc. Eight Int. Heat Transfer Conf. (San Francisco, California, 1986), pp. 627-632.

  13. X. J. Hu, J. H. Du, S. Y. Lei, and B. X. Wang, Int. J. Heat Mass Tran. 44:247(2001).

    Google Scholar 

  14. C. T. Hsu, P. Cheng, and K. W. Wong, J. Heat Transf. 117:264(1995).

    Google Scholar 

  15. X. Fu, R. Viskanta, and J. P. Gore, Int. Commun. Heat Mass 25:151(1998).

    Google Scholar 

  16. A. J. Slavin, F. A. Londry, and J. Harrison, Int. J. Heat Mass Tran. 43:2059(2000).

    Google Scholar 

  17. F. Gori and S. Corasaniti, IMECE, International Mechanical Engineering Congress and Exposition, HTD-24152, ASME (2001), pp. 1-8.

  18. F. Gori and S. Corasaniti, J. Heat Tran., ASME 124:1001-1008 (2002).

    Google Scholar 

  19. F. Gori and S. Corasaniti, Proc. 19th UIT Nat. Heat Transfer Conf. (2001), pp. 371-376.

  20. F. Gori and S. Corasaniti, Microgravity and Space Station Utilization 2:23(2001).

    Google Scholar 

  21. J. H. Blackwell, Can. J. Phys. 34:412(1956).

    Google Scholar 

  22. H. R. Thomas and J. Ewen, J. Heat Transf. 108:705(1986).

    Google Scholar 

  23. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, London, 1959).

    Google Scholar 

  24. R. M. Fand and R. H. Yamamoto, Proc. 9th Int. Heat Transfer Conf., Jerusalem, 15-PB-07 (1990).

  25. A. V. Luikov, Heat and Mass Transfer in Capillary-Porous Bodies (Pergamon Press, Oxford, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gori, F., Corasaniti, S. Experimental Measurements and Theoretical Prediction of the Thermal Conductivity of Two- and Three-Phase Water/Olivine Systems. International Journal of Thermophysics 24, 1339–1353 (2003). https://doi.org/10.1023/A:1026107319415

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026107319415

Navigation