Skip to main content
Log in

Crystal-Chemical Approach to Predicting the Thermal Expansion of Compounds in the NZP Family

  • Published:
Inorganic Materials Aims and scope

Abstract

The general structural aspects of phosphates with {[L2(PO4)3]p}3∞ frameworks (L = octahedral cation) are considered, and the possible isomorphous substitutions in NaZr2(PO4)3 (NZP) phosphates are analyzed. The available data on the thermal expansion of NZP materials in the range 293–1273 K, together with crystal-chemical data on their structure, are used to identify the processes underlying the thermal expansion of these materials. The results provide basic guidelines in designing NZP-based materials with controlled (ultralow) thermal expansion and near-zero expansion anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Volkov, Yu.F. and Orlova, A.I., Systematics of “Formula” Types in Orthophosphates of Uni-, Di-, Tri-, Tetra-, and Pentavalent Elements, Radiokhimiya, 1996, vol. 38, no.?1, pp. 3–14.

    Google Scholar 

  2. Alamo, J., Chemistry and Properties of Solids with the [NZP] Skeleton, Solid State Ionics, 1993, vols. 63–65, pp. 547–561.

    Google Scholar 

  3. Roy, R., Agrawal, D.K., Alamo, J., and Roy, R.A., [CTP]: A New Structural Family of Near-Zero Expansion Ceramics, Mater. Res. Bull., 1984, vol. 19, no. 4, pp. 471–477.

    Google Scholar 

  4. Pet'kov, V.I., Orlova, A.I., Kasantsev, G.N., et al., Thermal Expansion in the Zr and 1-, 2-Valent Complex Phosphates of NaZr2(PO4)3 (NZP) Structure, J. Therm. Anal. Calorim., 2001, vol. 66, no. 2, pp. 623–632.

    Google Scholar 

  5. Oota, T. and Yamai, I., Thermal Expansion Behavior of NaZr2(PO4)3-Type Compounds, J. Am. Ceram. Soc., 1986, vol. 69, no. 1, pp. 1–6.

    Google Scholar 

  6. Sandomirskii, P.A. and Belov, N.V., Kristallokhimiya smeshannykh anionnykh radikalov (Crystal Chemistry of Mixed Anion Radicals), Moscow: Nauka, 1984.

    Google Scholar 

  7. Pet'kov, V.I., Dorokhova, G.I., and Orlova, A.I., Architecture of [L2(PO4)3]p3??Framework Phosphates, Kristallografiya, 2001, vol. 46, no. 1, pp. 76–81.

    Google Scholar 

  8. Ono, A., Phase Relations in the System NH4Zr2(PO4)3-(NH4)3M2(PO4)3: M = Y, Al, or In, J. Mater. Sci. Lett., 1985, vol. 4, no. 11, pp. 936–939.

    Google Scholar 

  9. Hong, H.Y.-P., Crystal Structures and Crystal Chemistry in the System Na1 + xZr2SixP3_xO12, Mater. Res. Bull., 1976, vol. 11, no. 2, pp. 173–182.

    Google Scholar 

  10. Brochu, R., Louër, M., Alami, M., et al., Structure and Thermal Expansion of KGe2(PO4)3, Mater. Res. Bull., 1997, vol. 32, no. 1, pp. 113–122.

    Google Scholar 

  11. Boilot, J.P., Collin, G., and Comes, R., Zirconium Defi-ciency in Nasicon-Type Compounds: Crystal Structure of Na5Zr(PO4)3, J. Solid State Chem., 1983, vol. 50, no. 1, pp. 91–99.

    Google Scholar 

  12. Tran Qui, D. and Hamdoune, S., Structure of the Orthorhombic Phase of Li1 + xTi2_xInxP3O12, x = 1.08, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1988, vol. 44, no. 8, pp. 1360–1362.

    Google Scholar 

  13. Wang, S. and Hwu, S.-J., Li3_xTi2(PO4)3 (0 ≤x ≤1): A New Mixed Valent Titanium(III/IV) Phosphate with a NASICON-Type Structure, J. Solid State Chem., 1991, vol. 90, no. 2, pp. 377–381.

    Google Scholar 

  14. Sotofte, I. and Fu, D.C., Redetermination of the Crystal Structure of Na3Sc2(PO4)3, Solid State Ionics, 1988, vol. 26, pp. 307–310.

    Google Scholar 

  15. Tran Qui, D. and Hamdoune, S., Structure de Li3In2P3O12, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1987, vol. 43, no. 3, pp. 397–399.

    Google Scholar 

  16. Efremov, V.A. and Kalinin, V.B., Crystal Structure of Na3Sc2(PO4)3, Kristallografiya, 1978, vol. 23, no. 4, pp. 703–708.

    Google Scholar 

  17. Losilla, E.R., Aranda, M.A.G., Martinez-Lara, M., and Bruque, S., Reversible Triclinic–Rhombohedral Phase Transition in LiHf2(PO4)3: Crystal Structures from Neutron Powder Diffraction, Chem. Mater., 1997, vol. 9, no. 7, pp. 1678–1685.

    Google Scholar 

  18. Sizova, R.G., Blinov, V.A., Voronkov, A.A., et al., Redetermined Structure of Na4Zr2(SiO4)3 and Its Place in the Group of M2(TO4)3 Mixed Frameworks, Kristallografiya, 1981, vol. 26, no. 2, pp. 293–300.

    Google Scholar 

  19. Novikova, S.I., Teplovoe rasshirenie tverdykh tel (Thermal Expansion of Solids), Moscow: Nauka, 1974.

    Google Scholar 

  20. Filatov, S.K., Vysokotemperaturnaya kristallokhimiya (High-Temperature Crystal Chemistry), Leningrad: Nedra, 1990.

    Google Scholar 

  21. Breval, E. and Agrawal, D.K., Thermal Expansion Characteristics of [NZP], NaZr2(PO4)3-Type Materials: A Review, Br. Ceram. Trans., 1995, vol. 94, no. 1, pp. 27–32.

    Google Scholar 

  22. Samoilov, S.G., Kryukova, A.I., Kazantsev, G.I., and Artem'eva, G.Yu., Thermal Expansion of Alkali-Metal Hafnium Phosphates, Neorg. Mater., 1992, vol. 28, no. 10/11, pp. 2197–2202.

    Google Scholar 

  23. Woodcock, D.A. and Lightfoot, P., Comparison of the Structural Behavior of the Low-Thermal Expansion NZP Phases MTi2(PO4)3 (M = Li, Na, K), J. Mater. Chem., 1999, vol. 9, no. 11, pp. 2907–2911.

    Google Scholar 

  24. Govindan Kutty, K.V., Asuvathraman, R., and Sridharan, R., Thermal Expansion Studies on the Sodium Zirconium Phosphate Family of Compounds A1/2M2(PO4)3: Effect of Interstitial and Framework Cations, J. Mater. Sci., 1998, vol. 33, no. 15, pp. 4007–4013.

    Google Scholar 

  25. Alami Talbi, M., Brochu, R., Parent, C., et al., The New Phosphates Ln1/3Zr2(PO4)3 (Ln = Rare Earth), J. Solid State Chem., 1994, vol. 110, no. 2, pp. 350–355.

    Google Scholar 

  26. Govindan Kutty, K.V., Asuvathraman, R., Mathews, C.K., and Varadaraji, U.V., Effect of Variation in Framework Composition of the Thermal Expansivity of NZP Phases, Mater. Res. Bull., 1994, vol. 29, no. 10, pp. 1009–1016.

    Google Scholar 

  27. Orlova, A.I., Kemenov, D.V., Pet'kov, V.I., et al., Ultralow and Negative Thermal Expansion in Zirconium Phosphate Ceramics, High Temp.–High Pressures, 2002, vol. 34, no. 3, pp. 315–322.

    Google Scholar 

  28. Orlova, A.I., Kazantsev, G.N., and Samoilov, S.G., Ultralow Thermal Expansion in the Cs–Ln–Zr and M– Hf Phosphates (Ln = Pr, Sm, Gd; M = Na, K, Rb, Cs), High Temp.–High Pressures, 1999, vol. 31, no. 1, pp. 105–111.

    Google Scholar 

  29. Limaye, S.Y., Agrawal, D.K., and McKinstry, H.A., Synthesis and Thermal Expansion of MZr4P6O24 (M = Mg, Ca, Sr, Ba), J. Am. Ceram. Soc., 1987, vol. 70, no. 10, pp. 232–236.

    Google Scholar 

  30. Limaye, S.Y., Agrawal, D.K., Roy, R., and Mehrotra, Y., Synthesis, Sintering, and Thermal Expansion of Ca1_xSrxZr4P6O24 Ceramic, J. Appl. Crystallogr., 1995, vol. 28, pp. 508–512.

    Google Scholar 

  31. Ota, T., Jin, P., and Yamai, I., Low Thermal Expansion and Low Thermal Expansion Anisotropy Ceramic of Sr0.5Zr2(PO4)3 System, J. Mater. Sci., 1989, vol. 24, pp. 4239–4245.

    Google Scholar 

  32. Hazen, R.M., Finger, L.W., Agrawal, D.K., et al., High-Temperature Crystal Chemistry of Sodium Zirconium Phosphate (NZP), J. Mater. Res., 1987, vol. 2, no. 3, pp. 329–337.

    Google Scholar 

  33. Rodrigo, J.L., Carrasco, P., and Alamo, J., Thermal Expansion of NaTi2(PO4)3 Studied by Rietveld Method from X-ray Diffraction Data, Mater. Res. Bull., 1989, vol. 24, no. 5, pp. 611–618.

    Google Scholar 

  34. Alami, M., Brochu, R., Soubeyroux, J.L., et al., Structure and Thermal Expansion of LiGe2(PO4)3, J. Solid State Chem., 1991, vol. 90, no. 1, pp. 185–193.

    Google Scholar 

  35. Woodcock, D.A., Lightfoot, P., and Ritter, C., Mechanism of Low Thermal Expansion in the Cation-Ordered Nasicon Structure, Chem. Commun., 1998, no. 1, pp. 107–108.

    Google Scholar 

  36. Brochu, R., El-Yacoubi, M., Louër, M., et al., Crystal Chemistry and Thermal Expansion of Cd0.5Zr2(PO4)3 and Cd0.25Sr0.25Zr2(PO4)3 Ceramics, Mater. Res. Bull., 1976, vol. 32, no. 1, pp. 15–23.

    Google Scholar 

  37. Alamo, J. and Rodrigo, J.L., High Temperature Neutron Diffraction Study of CaZr4(PO4)6, Solid State Ionics, 1993, vols. 63–65, pp. 678–683.

    Google Scholar 

  38. Liu, D.-M., Lin, L.-J., and Chen, C.-J., Thermal Expansion and Crystal Chemistry of (Sr1 – xK2x)Zr4(PO4)6 Ceramic, J. Appl. Crystallogr., 1995, vol. 28, pp. 508–512.

    Google Scholar 

  39. Woodcock, D.A., Lightfoot, P., and Smith, R.I., Powder Neutron Diffraction Studies of Three Low Thermal Expansion Phases in the NZP Family: K0.5Nb0.5Ti1.5(PO4)3, Ba0.5Ti2(PO4)3, and Ca0.25Sr0.25Zr2(PO4)3, J. Mater. Chem., 1999, vol. 9, no. 10, pp. 2631–2636.

    Google Scholar 

  40. Taylor, D., Thermal Expansion Data: XIV. Complex Oxide with the Sodalite and Nasicon Framework Structures, Br. Ceram. Trans. J., 1991, vol. 90, no. 2, pp.64–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pet'kov, V.I., Orlova, A.I. Crystal-Chemical Approach to Predicting the Thermal Expansion of Compounds in the NZP Family. Inorganic Materials 39, 1013–1023 (2003). https://doi.org/10.1023/A:1026074722220

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026074722220

Keywords

Navigation