Skip to main content
Log in

The Synthesis and Thermal Expansion Behavior of Sodium and Calcium Zirconium Copper Phosphates

  • Published:
Inorganic Materials Aims and scope

Abstract

The crystal-chemical approach has been applied to design materials with regulated thermal expansion. To that end, model simulations have been performed for compositions of phosphates that yield solid solutions of the following type Na1 + 2xZr2 –xCux(PO4)3 and Ca0.5 +xZr2 –xCux(PO4)3, 0.1 ≤ x ≤ 0.5 with the expected structure of NaZr2(PO4)3 (NZP). The new phosphates have been prepared by solid-state reactions and characterized by X‑ray diffraction, IR spectroscopy, and scanning electron microscopy. The compounds have been shown to crystallize in the NZP structure, with a particle size from 0.1 to 1 μm. The thermal expansion of the compounds has been studied by high-temperature X-ray diffraction in the temperature range from 25 to 700°C. Linear, average, and volume coefficients of thermal expansion and anisotropy of thermal expansion have been calculated and analyzed in relation to composition of Na, Zr, Cu and Ca, Zr, Cu phosphates in the studied sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Lenain, G.E., McKinstry, H.A., Limaye, S.Y., and Woodward, A., Low thermal expansion of alkali–zirconium phosphates, Mater. Res. Bull., 1984, vol. 19, no. 11, pp. 1451–1456. https://doi.org/10.1016/0025-5408(84)90258-7

    Article  CAS  Google Scholar 

  2. Limaye, S.Y., Agrawal, D.K., and McKinstry, H.A., Synthesis and thermal expansion of MZr4P6O24 (M = Mg, Ca, Sr, Ba), J. Am. Ceram. Soc., 1987, vol. 70, no. 10, pp. 232–236. https://doi.org/10.1111/j.1151-2916.1987.tb04884.x

    Article  Google Scholar 

  3. Volgutov, V.Yu. and Orlova, A.I., Thermal expansion of phosphates with the NaZr2(PO4)3 structure containing lanthanides and zirconium: R0.33Zr2(PO4)3 (R = Nd, Eu, Er) and Er0.33(1 –x)Zr0.25xZr2(PO4)3, Crystallogr. Rep., 2015, vol. 60, no. 5, pp. 721–728. https://doi.org/10.1134/S1063774515050193

    Article  CAS  Google Scholar 

  4. Slobodyanik, N.S., Nagornyi, P.G., Kornienko, Z.I., and Lugovskaya, E.S., Reactions of zirconium dioxide with molten alkali metal phosphates, Zh. Neorg. Khim., 1988, vol. 33, no. 2, pp. 443–448.

    CAS  Google Scholar 

  5. Pet’kov, V.I., Orlova, A.I., and Egor’kova, O.V., On the existence of phases with the NaZr2(PO4)3 structure in double orthophosphate series with different alkali metal : zirconium ratios, Zh. Strukt. Khim., 1996, vol. 37, no. 6, pp. 1004–1013.

    Google Scholar 

  6. Gorodylova, N., Kosinova, V., and Sulcova, P., Interrelations between composition, structure, thermal stability, and chromatic characteristics of new nasicon-related solid solutions of Li1 +xCrxZr2 −x(PO4)3, Ceram. Int., 2017, vol. 43, no. 17, pp. 14 629–14 635. https://doi.org/10.1016/j.ceramint.2017.07.135

  7. Suganth, M., Kumar, N.R.S., and Varadaraju, U.V., Synthesis and leachability studies of NZP and eulytine phases, Waste Manage., 1998, vol. 18, no. 4, pp. 275–279. https://doi.org/10.1016/S0956-053X(98)00026-9

    Article  Google Scholar 

  8. Buvaneswari, G. and Varadaraju, U.V., Low leachability phosphate lattices for fixation of select metal ions, Mater. Res. Bull., 2000, vol. 35, no. 8, pp. 1313–1323. https://doi.org/10.1016/S0025-5408(00)00316-0

    Article  CAS  Google Scholar 

  9. Pet’kov, V., Asabina, E., Loshkarev, V., and Sukhanov, M., Systematic investigation of the strontium zirconium phosphate ceramic form for nuclear waste immobilization, J. Nucl. Mater., 2016, vol. 471, pp. 122–128. https://doi.org/10.1016/j.jnucmat.2016.01.016

    Article  CAS  Google Scholar 

  10. Kryukova, A.I., Korshunov, I.A., Vorob’eva, N.V., and Mitrofanova, V.A., Alkali metal, rare-earth, titanium, zirconium, and hafnium double phosphates in molten alkali metal chlorides, Radiokhimiya, 1978, vol. 20, no. 6, pp. 818–822.

    CAS  Google Scholar 

  11. Ordonez-Regil, E., Contreras-Ramirez, A., Fernandez-Valverde, S.M., et al., Crystal growth and thermoluminescence response of NaZr2(PO4)3 at high gamma radiation doses, J. Nucl. Mater., 2013, vol. 443, pp. 417–423. https://doi.org/10.1016/j.jnucmat.2013.07.051

    Article  CAS  Google Scholar 

  12. Orlova, A.I., Volgutov, V.Yu., Mikhailov, D.A., et al., Phosphate Ca1/4Sr1/4Zr2(PO4)3 of the NaZr2(PO4)3 structure type: synthesis of a dense ceramic material and its radiation testing, J. Nucl. Mater., 2014, vol. 446, pp. 232–239. https://doi.org/10.1016/j.jnucmat.2013.11.025

    Article  CAS  Google Scholar 

  13. Gorodylova, N., Kosinova, V., Dohnalova, Z., et al., New purple-blue ceramic pigments based on CoZr4(PO4)6, Dyes Pigments, 2013, vol. 98, no. 3, pp. 393–404. https://doi.org/10.1016/j.dyepig.2013.03.004

    Article  CAS  Google Scholar 

  14. Gorodylova, N., Kosinova, V., Dohnalova, Z., et al., Thermal stability and colour properties of CuZr4(PO4)6, J. Therm. Anal. Calorim., 2016, vol. 126, no. 1, pp. 121–128. https://doi.org/10.1007/s10973-016-5415-9

    Article  CAS  Google Scholar 

  15. Hagman, L.O. and Kierkegaard, P., The crystal structure of NaM2IV(PO4)3; MeIV = Ge, Ti, Zr, Acta Chem. Scand., 1968, vol. 22, pp. 1822–1832. https://doi.org/10.3891/acta.chem.scand.22-1822

    Article  CAS  Google Scholar 

  16. Orlova, A.I., Isomorphism in crystalline phosphates of the NaZr2(PO4)3 structural type and radiochemical problems, Radiochemistry, 2002, vol. 44, no. 5, pp. 423–445. https://doi.org/10.1023/A:1021192605465

    Article  CAS  Google Scholar 

  17. Lenain, G.E., McKinstry, H.A., Alamo, J., and Agrawal, D.K., Structural model for thermal expansion in MZr2P3O12 (M=Li, Na, K, Rb, Cs), J. Mater. Sci., 1987, vol. 22, no. 1, pp. 17–22. https://doi.org/10.1007/BF01160546

    Article  CAS  Google Scholar 

  18. Pet’kov, V.I. and Orlova, A.I., Crystal-chemical approach to predicting the thermal expansion of compounds in the NZP family, Inorg. Mater., 2003, vol. 39, no. 10, pp. 1013–1023. https://doi.org/10.1023/A:1026074722220

    Article  Google Scholar 

  19. Roy, S. and Padma Kumar, P., Framework flexibility of sodium zirconium phosphate: role of disorder, and polyhedral distortions from Monte Carlo investigation, J. Mater. Sci., 2012, vol. 47, no. 12, pp. 4949–4954. https://doi.org/10.1007/s10853-012-6369-3

    Article  CAS  Google Scholar 

  20. Savinykh, D.O., Khainakov, S.A., Orlova, A.I., and Garcia-Granda, S., Preparation and thermal expansion of calcium iron zirconium phosphates with the NaZr2(PO4)3 structure, Inorg. Mater., 2018, vol. 54, no. 6, pp. 591–595. https://doi.org/10.1134/S0020168518060122

    Article  CAS  Google Scholar 

  21. Christiansen, R.H.-W. and Warner, T.E., A study of copper stoichiometry and phase relationships in the copper–zirconium phosphate system: CuZr2(PO4)3–Cu0.5Zr2(PO4)3, J. Mater. Sci., 2006, vol. 41, no. 4, pp. 1197–1205. https://doi.org/10.1007/s10853-005-3657-1

    Article  CAS  Google Scholar 

  22. Povarova, E.I., Pylinina, A.I., and Mikhalenko, I.I., Catalytic dehydrogenation of propanol-2 on Na–Zr phosphates containing Cu, Co, and Ni, Russ.J. Phys. Chem. A, 2012, vol. 86, no. 6, pp. 935–941. https://doi.org/10.1134/S0036024412060210

    Article  CAS  Google Scholar 

  23. Asabina, E.A., Orekhova, N.V., Ermilova, M.M., et al., Synthesis and catalytic properties of M0.5(1 +x)FexTi2 −x-(PO4)3 (M = Co, Ni, Cu; 0 ≤ x ≤ 2) for methanol conversion reactions, Inorg. Mater., 2015, vol. 51, no. 8, pp. 793–798. https://doi.org/10.1134/S002016851508004X

    Article  CAS  Google Scholar 

  24. Savinykh, D.O., Khainakov, S.A., Orlova, A.I., and Garcia-Granda, S., New phosphate-sulfates with NZP structure, Russ. J. Inorg. Chem., 2018, vol. 63, no. 6, pp. 714–724. https://doi.org/10.1134/S0036023618060207

    Article  CAS  Google Scholar 

  25. Gorodylova, N., Sulcova, P., Bosacka, M., and Filipek, E., DTA–TG and XRD study on the reaction between ZrOCl2 · 8H2O and (NH4)2HPO4 for synthesis of ZrP2O, J. Therm. Anal. Calorim., 2014, vol. 118, no. 2, pp. 1095–1100. https://doi.org/10.1007/s10973-014-3890-4

    Article  CAS  Google Scholar 

  26. Gorodylova, N. and Sulcova, P., DTA–TGA and XRD study of the formation of LISICON-type Li1 +xCrxZr2 –x-(PO4)3 ceramic using ZrOCl2 · 8H2O as precursor, J. Therm. Anal. Calorim., 2018, vol. 133, no. 1, pp. 405–411. https://doi.org/10.1007/s10973-017-6736-z

    Article  CAS  Google Scholar 

  27. Orlova, M., Perfler, L., Tribus, M., et al., Temperature induced phase transition of CaMn0.5Zr1.5(PO4)3 phosphate, J. Solid State Chem., 2016, vol. 235, pp. 36–42. https://doi.org/10.1016/j.jssc.2015.12.014

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 16-13-10464: Advanced ceramic like mineral materials with improved and adjustable service characteristics: design, synthesis, study, 2019–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Savinykh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savinykh, D.O., Khainakov, S.A., Orlova, A.I. et al. The Synthesis and Thermal Expansion Behavior of Sodium and Calcium Zirconium Copper Phosphates. Inorg Mater 56, 388–394 (2020). https://doi.org/10.1134/S0020168520040147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520040147

Keywords:

Navigation