Skip to main content
Log in

The Oxidation of Two Ternary Ni–Cu–5 at.%Al Alloys in 1 atm of Pure O2 at 800–900°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation of a Ni-rich and a Cu-rich single-phase ternary alloy containing about 5 at.% aluminum has been studied at 800 and 900°C under 1 atm O2. The behavior of the Ni-rich alloy is similar to that of a binary Ni–Al alloy with a similar Al content at both temperatures, with formation of an external NiO layer coupled to the internal oxidation of aluminum. The Cu-rich ternary alloy shows a larger tendency to form protective alumina scales, even though its behavior is borderline between protective and non-protective. In fact, at 800°C, after an initial stage of fast reaction during which all the alloy components are oxidized, this alloy is able to develop a continuous layer of alumina at the base of the scale which prevents the internal oxidation of aluminum. On the contrary, at 900°C the innermost alumina layer undergoes repeated rupturing followed by healing, so that internal oxidation of Al is only partly eliminated. As a result, the corrosion kinetics of the Cu-rich ternary alloy at 900°C are much faster than at 800°C and very similar to those of pure copper and of Al-dilute binary Cu–Al alloys. Possible reasons for the larger tendency of the Cu-rich alloy to form external alumina scales than the Ni-rich alloy are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. B. Massalski, J. L. Murry, L. H. Bennett, and H. Baker (eds.) in Binary Alloys Phase Diagrams (ASM, Materials Park, Ohio, 1986).

    Google Scholar 

  2. W. L. Fink and L. A. Willy, Trans. AIME III, 293(1934).

    Google Scholar 

  3. P. Villars, A. Prinec, and H. Okamoto (eds.) in Handbook of Ternary Alloy Phase Diagrams (ASM International, Materials Park, USA, 1997).

    Google Scholar 

  4. I. Barin, Thermodynamic Data of Pure Substances (VHG, Weinheim, Germany, 1989).

    Google Scholar 

  5. D. P. Whittle and G. C. Wood, Corros. Sci. 8 295(1968).

    Google Scholar 

  6. R. Hausgrud and P. Kofstad, Oxid. Met. 50, 189(1998).

    Google Scholar 

  7. R. Hausgrud, Oxid. Met. 52, 427(1999).

    Google Scholar 

  8. K. W. Frohlich, Z. Metallkde 28, 368(1936).

    Google Scholar 

  9. L. E. Price, and G. J. Thomas, J. Inst. Metals, 63, 21(1938).

    Google Scholar 

  10. S. Miyake, Bull. Inst. Phys. Chem. Res. (Tokyo) 14, 704(1936).

    Google Scholar 

  11. J. P. Dennison and A. Preece, J. Inst. Metals 81, 229(1952).

    Google Scholar 

  12. J. C. Blade and A. Preece, J. Inst. Metals 88, 427(1959).

    Google Scholar 

  13. M. D. Sanderson and J. C. Scully, Oxid. Met. 3, 59(1971).

    Google Scholar 

  14. F. S. Pettit, Trans. Met. Soc. AIME 239, 1296(1967).

    Google Scholar 

  15. G. C. Wood and F. H. Stott, Brit. Corros. J. 6, 247(1971).

    Google Scholar 

  16. G. C. Wood and F. H. Stott, in High Temperature Corrosion, R. A. Rapp, ed. (NACE, Houston, USA, 1983), p. 227.

    Google Scholar 

  17. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, New York, 1988).

    Google Scholar 

  18. F. Gesmundo, Y. Niu, D. Oquab, C. Roos, B. Pieraggi, and F. Viani, Oxid. Met. 49, 115(1998).

    Google Scholar 

  19. H. M. Hindam and W. W. Smeltzer, J. Electrochem. Soc. 127, 1622(1980).

    Google Scholar 

  20. C. Wagner, Z. Elektrochem. 63, 772(1959).

    Google Scholar 

  21. R. A. Rapp, Corrosion 21, 382(1965).

    Google Scholar 

  22. C. Wagner, J. Electrochem. Soc. 99, 369(1952).

    Google Scholar 

  23. J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, 1965).

    Google Scholar 

  24. F. Maak, Z. Metallkde 52, 545(1961).

    Google Scholar 

  25. F. Gesmundo and F. Viani, Oxid. Met. 25, 269(1986).

    Google Scholar 

  26. J. W. Park and C. J. Altstetter, Met. Trans. 18A, 43(1987).

    Google Scholar 

  27. R. L. Pastorek and R. A. Rapp, Trans. Met. Soc. AIME 245, 1711(1969).

    Google Scholar 

  28. S. W. Guan, H. C. Yi and W. W. Smeltzer, Oxid. Met. 41, 377(1994).

    Google Scholar 

  29. F. N. Rhines and R. F. Mehl, Trans. Met. Soc. AIME 128, 185(1938).

    Google Scholar 

  30. D. P. Whittle, Y. Shida, G. C. Wood and B. D. Bastow, Phil. Mag. A, 46, 931(1982).

    Google Scholar 

  31. A. Martinez-Villafane, F. H. Stott, J. G. Chacon-Nava, and G. C. Wood, Oxid. Met. 57, 267(2002).

    Google Scholar 

  32. F. Gesmundo, F. Viani, and Y. Niu, Oxid. Met. 45, 51(1996).

    Google Scholar 

  33. F. Gesmundo, F. Viani, and Y. Niu, Oxid. Met. 47, 355(1997).

    Google Scholar 

  34. F. Gesmundo and Y. Niu, Oxid. Met., 60, 347(2003).

    Google Scholar 

  35. J. Kirkaldy and D. J. Young, Diffusion in the Condensed State (The Institute of Metals, London, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, Y., Xiang, J. & Gesmundo, F. The Oxidation of Two Ternary Ni–Cu–5 at.%Al Alloys in 1 atm of Pure O2 at 800–900°C. Oxidation of Metals 60, 293–313 (2003). https://doi.org/10.1023/A:1026071219529

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026071219529

Navigation