Skip to main content
Log in

Central Nervous System Lesions That Can and Those That Cannot Be Repaired with the Help of Olfactory Bulb Ensheathing Cell Transplants

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Growth-promoting macroglia (aldynoglia) with growth properties and immunological markers similar to Schwann cells, are found in loci of the mammalian CNS where axon regeneration occurs throughout life, like the olfactory sytem, hypothalamus-hypophysis and the pineal gland [79]. Contrary to Schwann cells, aldynoglia mingle freely with astrocytes and can migrate in brain and spinal cord. Transplantation of cultured and immunopurified olfactory ensheathing cells (OECs) in the spinal cord after multiple central rhizotomy, promoted sensory and central axon growth and partial functional restoration, judging by anatomical, electrophysiological and behavioural criteria. OEC transplants suppressed astrocyte reactivity, thus generally favouring axon growth after a lesion. However, the functional repair promoted by OEC transplants was partial in the best cases, depending on lesion type and location. Cyst formation after photochemical cord lesion was partially prevented but neither the corticospinal tract, interrupted by a mild contusion, nor the sectioned medial longitudinal fascicle, did regrow after OEC transplantation in the injured area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ramón y Cajal, S. 1914., Estudios sobre la degeneración y regeneración del sistema nervioso. Imprenta Hijos de Nicolás Moya, Madrid.

    Google Scholar 

  2. Fawcett, J. W. and Keynes, R. J. (1990) Peripheral nerve regeneration. Annu. Rev. Neurosci. 13:43-60.

    PubMed  Google Scholar 

  3. Nieto-Sampedro, M. 1999. Neurite outgrowth inhibitors in gliotic tissue. Pages 287-224, R. Matsas and M. Tsacopoulos (eds.), The Function of Glial Cells in Health and Disease: Dialogue Between Glia and Neurons Advances in Experimental Medicine and Biology Vol. 168, New York, Plenum.

    Google Scholar 

  4. Tello, J. F. 1911 La influencia del neurotropismo en la regeneración de los centros nerviosos. Trab. Lab. Invest. Biol. 9:123-159.

    Google Scholar 

  5. Goldberg, J. L., Klassen, M. P., Hua, Y., and Barres, B. A. 2002 Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296:1860-1864.

    PubMed  Google Scholar 

  6. Herreras, O. and Largo, C. 2002. Las huellas eléctricas en el camino hacia la muerte neuronal isquémica. Rev. Neurol. 35:838-845.

    PubMed  Google Scholar 

  7. Ramón-Cueto, A. and Nieto-Sampedro, M. 1994. Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Exp Neurol. 127:232-244.

    PubMed  Google Scholar 

  8. Doucette, R. 1995. Olfactory ensheathing cells: Potential for glial cell transplantation into areas of CNS injury. Histol. Histopathol. 10:503-507.

    PubMed  Google Scholar 

  9. Li, Y., Field, P. M., and Raisman, G. 1997. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 277:2000-2002.

    PubMed  Google Scholar 

  10. Raisman, G. 2001. Olfactory ensheathing cells-another miracle cure for spinal cord injury? Nat. Rev. Neurosci. 2:369-374.

    PubMed  Google Scholar 

  11. Richardson, P. M., McGuinness, U. M., and Aguayo, A. J. 1980. Axons from CNS neurons regenerate into PNS grafts. Nature 284:264-265.

    PubMed  Google Scholar 

  12. Schwab, M. E. and Caroni, P. 1988. Oligodendrocytes and fibroblast spreading in vitro. J. Neurosci. 8:2381-2393.

    PubMed  Google Scholar 

  13. Caroni, P. and Schwab, M. E. 1988. Two membrane protein fraction from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J. Cell Biol. 106:1281-1288.

    PubMed  Google Scholar 

  14. Caroni, P. and Schwab, M. E. 1988 Antibodies against myelin associated inhibitor of neurite growth neutralizes non-permessive substrate properties of CNS white matter. Neuron 1:85-96.

    PubMed  Google Scholar 

  15. Fawcett, J. W., Housden, E., Smith-Thomas, L., and Meyer, R. L. 1989. The growth of axons in three-dimensional astrocyte cultures. Dev. Biol. 135:449-458.

    PubMed  Google Scholar 

  16. Bandtlow, C., Zachleder, T., and Schwab, M. E. 1990. Oligodendrocytes arrest neurite growth by contact inhibition. J. Neurosci. 10:3837-3848.

    PubMed  Google Scholar 

  17. Pesheva, P., Speiss, E., and Schachner, M. 1989. J1-160 and J1-180 are oligodendrocyte-secreted nonpermissive substrate for cell adhesion. J. Cell Biol. 109:1765-1778.

    PubMed  Google Scholar 

  18. Schachner, M. 1991. Neural recognition molecules and their influence on cellular functions. Pages 237-254. In Letourneau, P. C. Kater S. B. and Macagno E. R. (eds.), The Nerve Growth Cone, New York, Raven.

    Google Scholar 

  19. Schnell, L. and Schwab, M. E. 1990. Axonal regeneration in the rat spinal cord produced by an antibody against myelin associated neurite growth inhibitors. Nature 343:269-272.

    PubMed  Google Scholar 

  20. Schnell, L. and Schwab, M. E. 1993. Sprouting and regeneration of lesioned corticospinal tract fibers in the adult rat spinal cord. Eur. J. Neurosci. 5:1156-1171.

    PubMed  Google Scholar 

  21. Schnell, L., Schneider, R., Kolbeck, R., Barde, Y.-A., and Schwab, M. E 1994. Neurotophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367:170-173.

    PubMed  Google Scholar 

  22. Thallmair, M., Metz, G. A. S., Graggen, W. J. Z., Raineteau, O., Kartje, G. L., and Schwab, M. E. 1998. Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Nat. Neurosci. 1:124-131.

    PubMed  Google Scholar 

  23. Liuzzi, F. J. and Lasek, R. J. 1987. Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway. Science 237:642-645.

    PubMed  Google Scholar 

  24. Bovolenta, P., Wandosell, F., and Nieto-Sampedro, M. 1993. Characterization of a neurite outgrowth inhibitor expressed after CNS injury. Eur. J. Neurosci. 5:454-465.

    PubMed  Google Scholar 

  25. Reier, P. J. and Houle, J. D. 1988. The glial scar: Its bearing on axonal elongation and transplantation approaches to CNS repair. Pages 87-155, in S.G. Waxman (ed.), Advances in Neurology, Vol. 47, New York, Raven Press.

    Google Scholar 

  26. Bignami, A. and Dahl, D. 1974. Astrocyte-specific protein and neuroglial differentation: An immunofluorescence study with antibodies to the glial fibrillary acidic protein. J. Comp. Neurol. 153:27-38.

    PubMed  Google Scholar 

  27. Graeber, M. B., Streit, W. J., and Kreutzberg, G. W. 1988. Axotomy of the rat facial nerve leads to increased expression of CR3 complement receptor expression by activated microglial cells. J. Neurosci. Res. 21:18-24.

    PubMed  Google Scholar 

  28. Günther, J., Nick, H., and Monard, D. 1985. A glial derived neurite promoting factor with protease inhibitory activity. EMBO J. 4:1963-1966.

    PubMed  Google Scholar 

  29. Pittman, R. N. 1985. Release of plasminogen activator and a calcium dependent metalloprotease from cultured sympathetic and sensory neurons. Dev. Biol. 110:91-101.

    PubMed  Google Scholar 

  30. McGuire, P. G. and Seeds, N. W. 1990. Degradation of underlying extracellular matrix by sensory neurons during neurite outgrowth. Neuron 4:633-642.

    PubMed  Google Scholar 

  31. McKeon, R. J., Schreiber, R. C., Rudge, J. S., and Silver, J. 1991. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 11:3398-3411.

    PubMed  Google Scholar 

  32. Laywell, E. D., Dörries, U., Bartsch, U., Faissner, A., Schachner, M, and Steindler, D. A. 1992. Enhanced expression of the developmentally regulated extracellular matrix molecule tenascin following adult brain injury. Proc Natl. Acad. Sci. USA 89:2634-2638.

    PubMed  Google Scholar 

  33. Levine J. M. and Levine A. K. 1992. Increased expression of the NG2 proteoglycan after brain injury. Soc. Neurosci. Abstr. 22:959.

    Google Scholar 

  34. Greenfield, J. G. 1958. General pathology of nerve cell and neuroglia. Pages 1-66, in Greenfield, J. G., Blackwood, W., Meyer, A., McMenemey, W. H., Norman, R. M. (eds.): Neuropathology London, Ed. Arnold, Ltd.

    Google Scholar 

  35. Bovolenta, P., Wandosell, F., and Nieto-Sampedro, M. 1991. Neurite outgrowth over resting and reactive astrocytes. Res. Neurol. Neurosci. 2:221-228.

    Google Scholar 

  36. Bovolenta, P., Wandosell, F., and Nieto-Sampedro, M. 1991. Central neurite outgrowth over glial scar tissue in vitro. Pages 477-488, in Kater, S. B. Letourneau, P. C., and Macagno E. R. (eds.), The Nerve Growth Cone, New York, Raven Press.

    Google Scholar 

  37. Bovolenta, P., Wandosell, F., and Nieto-Sampedro, M. 1992. CNS glial scar tissue: A source of molecules which inhibit central neurite outgrowth. Prog. Brain Res. 94:367-379.

    PubMed  Google Scholar 

  38. Bovolenta, P., Fernaud-Espinosa, I., Méndez-Otero, R., and Nieto-Sampedro, M. 1997. Neurite outgrowth inhibitor of gliotic brain tissue: Mode of action and cellular localization, studied with specific monoclonal antibodies. Eur. J. Neurosci. 9:977-989.

    PubMed  Google Scholar 

  39. Hatten, M., Liem, R., Shelanski, M., and Mason, C. 1991. Astroglia in CNS injury. Glia 4:233-243.

    PubMed  Google Scholar 

  40. Norenberg, M. 1994. Astrocyte responses to CNS injury. J. Neuropathol. Exp. Neurol. 53:213-220.

    PubMed  Google Scholar 

  41. Noble, M. N., Fok-Seang, J., and Cohen, J. 1984. Glia are a unique substrate for the in vitro growth of central nervous system neurons. J. Neurosci. 4:892-1903.

    Google Scholar 

  42. Fallon, J. 1985. Preferential outgrowth of central nervous system neurites on astrocytes and Schwann cells as compared with nonglial cells in vitro. J. Cell Biol. 100:198-207.

    PubMed  Google Scholar 

  43. Pixley, S. K. R., Nieto-Sampedro, M., and Cotman, C. W. 1987. Preferential adhesion of brain astrocytes to laminin and central neurite to astrocytes. J. Neurosci. Res. 18:402-406.

    PubMed  Google Scholar 

  44. Wandosell, F., Bovolenta, P., and Nieto-Sampedro, M. 1993. Differences between reactive astrocytes and cultured astrocytes treated with dibutiryl-cyclic AMP. J. Neuropathol. Exp. Neurol. 52:205-215.

    PubMed  Google Scholar 

  45. Reier, P. J., Stensaas, L. J., and Guth, L. 1983. The astrocytic scar as an impediment to regeneration in the central nervous system. Pages 163-195, in Kad, C. C., Bunge, R. P., and Reier, P. J. (eds.), Spinal Cord Reconstruction, New York, Raven Press.

    Google Scholar 

  46. Lindsay, R. M., Barber, P. C., Sherwood, M. R. C., Zimmer, J., and Raisman, G. 1982. Astrocyte cultures from adult rat brain: Derivation, characterization, and neurotrophic properties of pure astroglial cells from corpus callosum. Brain Res. 243:329-343.

    PubMed  Google Scholar 

  47. Lindsay, R. M. 1986. Reactive gliosis. Pages 231-262, in Fedoroff S. and Varnadakis, A. (eds.), Astrocytes, Vol. 3. New York, Acadedemic Press.

    Google Scholar 

  48. Holmin, S., Almqvist, P., Lendahl, U., and Mathiesen, T. 1997. Adult nestin-expressing subependymal cells differentiate to astrocytes in response to brain injury. Eur. J. Neurosci. 9:65-75.

    PubMed  Google Scholar 

  49. Johansson, C. B., Momma, S., Clarke, D. L., Risling, M., Lendahl, U., and Frisén, J. 1999. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25-34.

    PubMed  Google Scholar 

  50. Helmuth, L. 2000. Stem cells hear the call of injured tissue. Science 290:1479-1480.

    PubMed  Google Scholar 

  51. Wandosell, F., Bovolenta, P., and Nieto-Sampedro, M. 1990. Reactive astrocytes and dBcAMP-treated astrocytes have different surface markers. Soc. Neurosci. Abst. 16:351.

    Google Scholar 

  52. Fedoroff, S., McAuley, W. A. J., Houle, J. D., and Devon, R. M. 1984. Astrocyte cell lineage: V. Similarity of astrocytes that form in the presenceof dBcAMP in culture to reactive astrocytes in vivo. J. Neurosci. Res. 12:15-27.

    Google Scholar 

  53. Streit, W. J., Graeber, M. B., and Kreutzberg, G. W. 1988. Functional plasticity of microglia: A review. Glia 1:301-307.

    PubMed  Google Scholar 

  54. Tommaselli, K. J., Neugebauer, K. M., Bixbey, J. L., Lilien, J., and Reichardt, L. F. 1988. N-Cadherin and integrins: Two receptor system that mediate neuronal process outgrowth on astrocyte surface. Neuron 1:33-43.

    PubMed  Google Scholar 

  55. Silver, J. 1984. Studies on the factors that govern directionality of axonal growth in the embryonic optic nerve and at the chiasm of mice. J. Comp. Neurol. 223:238-251.

    PubMed  Google Scholar 

  56. Bovolenta, P. and Mason, C. A. 1987. Growth cone morphology varies with position in the developing mouse visual pathway from the retina to first targets J. Neurosci. 7:1447-1460.

    PubMed  Google Scholar 

  57. Aguayo, A. J., Vidal-Sanz, M., Villegas-Pérez, M. P., y Bray, G. M. 1987. Growth and connectivity of axotomized retinal neurons in adult rat with optic nerves substituted by PNS grafts linking the eyes and midbrain. Ann. N Y Acad. Sci. 495:1-9.

    Google Scholar 

  58. Snow, D., Lemmon, V., Carrino, D., Caplan, A., and Silver, J. 1990. Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp. Neurol. 109:111-130.

    PubMed  Google Scholar 

  59. Laywell, E. D. and Steindler, D. A. 1991. Boundaries and wounds, glia and glycoconjugates: Cellular and molecular analyses of developmental partitions and adult brain lesions. Ann. N Y Acad. Sci. 633:122-141.

    PubMed  Google Scholar 

  60. Haas, C. A., Rauch, U., Thon, N., Merten, T. T., and Deller, T. 1999. Entorhinal cortex lesion in adult rats induces the expression of the neuronal chondroitin sulfate proteoglycan neurocan in reactive astrocytes. J. Neurosci. 19:9953-9963.

    PubMed  Google Scholar 

  61. Lander, A. D., Tomaselli, K., Calof, A. L., and Reichart, L. F. 1983. Studies on extracellular matrix components that promote neurite outgrowth. Cold Spring Harber Symp. Quant. Biol. 48:611-623.

    Google Scholar 

  62. Sandrock, Jr., A. W. and Matthew, W. D. 1987. Identification of a peripheral nerve neurite growth-promoting activity by development and use of an in vitro bioassay. Proc. Nat. Acad. Sci. USA 84:6934-6938.

    PubMed  Google Scholar 

  63. Snow, D., Watanabe, M., Letourneau, P., and Silver, J. 1991. A chondroitin sulfate proteoglycan may influence the direction of retinal ganglion cell outgrowth. Development 113:1473-1485.

    PubMed  Google Scholar 

  64. Cole, C. G. and McCabe, C. F. 1991. Identification of a developmentally regulated keratan sulphate proteoglycan that inhibits cell adhesion and neurite outgrowth. Neuron 7:1007-1018.

    PubMed  Google Scholar 

  65. Fichard, A., Verna, J. M., and Saxod, R. 1991. Involvement of a chondroitin sulfate proteoglycan in the avoidance of chick epidermis by dorsal root ganglia fibers: A study using β-D-xyloxide. Dev. Biol. 148:1-9.

    PubMed  Google Scholar 

  66. Dou, C. L. and Levine, J. M. 1995. Differential effects of glycosaminoglycans on neurite outgrowth on laminin and L1 substrates. J. Neurosci. 15:8053-8066.

    PubMed  Google Scholar 

  67. Bandtlow, C. E. and Zimmermann, D. R. 2000. Proteoglycans in the developing brain: New conceptual insights for old proteins. Physiol. Rev. 80:1267-1290.

    PubMed  Google Scholar 

  68. Faissner, A., Clement, A., Lochter, A., Streit, A., Mandl, C., and Schachner, M. 1994. Isolation of a neural chondroitin sulfate proteoglycan with neurite outgrowth promoting properties. J. Cell Biol. 126:783-799.

    PubMed  Google Scholar 

  69. Rauch, U. 1997. Modeling an extracellular environment for axonal pathfinding and fasciculation in the central nervous system. Cell Tissue Res. 290:349-356.

    PubMed  Google Scholar 

  70. Fernaud-Espinosa, I., Nieto-Sampedro, M., and Bovolenta, P. 1993. Differential activation of microglia and astrocytes in aniso-and isomorphic gliotic tissue. Glia 8:277-291.

    PubMed  Google Scholar 

  71. Fernaud-Espinosa, I., Nieto-Sampedro, M., and Bovolenta, P. 1998. A neurite outgrowth-inhibitory proteoglycan expressed during development is similar to that isolated from adult brain after isomorphic injury. J. Neurobiol. 36:16-29.

    PubMed  Google Scholar 

  72. Verdú, E., García-Alías, G., Forés, J., Gudiño-Cabrera, G., Nieto-Sampedro, M., and Navarro, X. 2001. Effects of ensheathing cells transplanted into photochemically damaged spinal cord. Neuroreport, 12:2303-2309.

    PubMed  Google Scholar 

  73. Abad-Rodríguez, J., Bernabe, M., Romero-Ramírez, L., Vallejo-Cremades M., Fernández-Mayoralas, A., and Nieto-Sampedro, M. 2000. Purification and structure of neurostatin, an inhibitor of astrocyte division from mammalian brain. J. Neurochem. 74:2547-2556.

    PubMed  Google Scholar 

  74. Theodosis, D. T. and Mac Vicar, B. 1996. Neuroneglia interactions in the hypothalamus and pituitary. TINS, 19:363-367.

    PubMed  Google Scholar 

  75. García-Segura, L. M., Chowen, J. A., and Naftolin, F. 1996. Endocrine glia: Roles of glial cells in the brain actions of steroid and thyroid hormones and in the regulation of hormone secretion. Front Neuroendocrinol. 17:180-211.

    PubMed  Google Scholar 

  76. Chauvet, N., Parmentier, M. L., and Alonso, G. 1995. Transected axons of adult hypothalamic-neurohypophysial neurons regenerate along tanicytic processes. J. Neurosci. Res. 41:129-144.

    PubMed  Google Scholar 

  77. Chauvet, N., Privat, A., and Alonso, G. 1996. Aged median eminence glial cell cultures promote survival and neurite outgrowth of cocultured neurons. Glia 18:211-223.

    PubMed  Google Scholar 

  78. Chauvet, N., Prieto, M., and Alonso, G. 1998. Tanycytes present in the adult rat mediobasal hypothalamus support the regeneration of monoaminergic axons. Exp. Neurol. 151:1-13.

    PubMed  Google Scholar 

  79. Gudiño-Cabrera, G. and Nieto-Sampedro, M. 2000. Schwann-like growth-promoting macroglia in adult rat brain. Glia 30:49-63.

    PubMed  Google Scholar 

  80. Shein, H. M. 1965. Propagation of human fetal spongioblasts and astrocytes in dispersed cell cultures. Exp. Cell Res. 40:554-569.

    PubMed  Google Scholar 

  81. Booher, J. and Sensenbrenner, M. 1972. Growth an cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiology 2:97-105.

    PubMed  Google Scholar 

  82. Mc Carthy, K. and de Vellis, J. 1980. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85:890-902.

    PubMed  Google Scholar 

  83. Kennedy, P. G. E. and Lisak, R. P. 1980. Astrocytes and oligo-dendrocytes in dissociated cell culture of adult rat optic nerve. Neurosci. Lett. 16:229-233.

    PubMed  Google Scholar 

  84. Norton, W. T. and Farooq, M. 1989. Astrocytes cultured from mature brain derive from glial precursor cells. J. Neurosci. 9:769-775.

    PubMed  Google Scholar 

  85. Doucette, R. 1990. Glial influences on axonal growth in the primary olfactory system. Glia 3:433-449.

    PubMed  Google Scholar 

  86. Doucette, R. 1995. Olfactory ensheathing cells: Potential for glial cell transplantation into areas of CNS injury. Histol. Histopathol. 10:503-507.

    PubMed  Google Scholar 

  87. Ramón-Cueto, A. and Nieto-Sampedro, M. 1992. Glial cells from adult rat olfactory bulb: Immunocytochemical properties of pure cultures of ensheathing cells. Neuroscience 47:213-220.

    PubMed  Google Scholar 

  88. Gómez-Pinilla, F., Cotman, C. W., and Nieto-Sampedro, M. 1987. NGF Receptor immunoreactivity in rat brain: Topographic distribution and response to entorhinal ablation. Neurosci. Lett. 82:260-266.

    PubMed  Google Scholar 

  89. Fields, K. R. and Dammerman, M. 1985. A monoclonal antibody equivalent to anti-rat neural antigén-1 as a marker for Schwann cells. Neuroscience 15:877-886.

    PubMed  Google Scholar 

  90. Bunge, R. P., Bunge, M. B., and Eldridge, C. F. 1986. Linkage between axonal ensheathment and basal lamina production by Schwann cells. Ann. Rev. Neurosci. 9:305-328.

    PubMed  Google Scholar 

  91. Johnson, E. M., Clark, H. B., Schweitzer, J. B., and Taniuchi, M. 1988. Expression of nerve growth factor receptors on Schwann cells after axonal injury. In Reier, P. J., Bunge, R. P., and Seil, F. J.(eds.), Current Issues in Neural Regeneration Research, Vol. 48. New York, Alan R. Liss.

    Google Scholar 

  92. Assouline, J. G. and Pantazis, N. J. 1989. Detection of a nerve growth factor receptor on fetal human Schwann cells in culture: Absence of the receptor on fetal human astrocytes. Dev. Brain Res. 45:1-14.

    Google Scholar 

  93. Kafitz, K. W. and Greer, C. A. 1999. Olfactory ensheathing cells promote neurite extension from embryonic olfactory receptor cells in vitro. Glia 25:99-110.

    PubMed  Google Scholar 

  94. Sonigra, R. J., Brighton, P. C., Jacoby, J., Hall, S., and Wigley, C. B. 1999. Adult rat olfactory nerve ensheathing cells are effective promoters of adult central nervous system neurite outgrowth in coculture. Glia 25:256-259.

    PubMed  Google Scholar 

  95. Ramón-Cueto, A., Pérez, J., and Nieto-Sampedro, M. 1993. In vitro enfolding of olfactory neurites by p75 NGF receptor positive ensheathing cells from adult rat olfactory bulb. Eur. J. Neurosci. 5:1172-1180.

    PubMed  Google Scholar 

  96. Doucette, J. R. 1986. Astrocytes in the olfactory bulb. Pages 293-310, in Fedoroff, S. and Vernardakis, A. (eds.), Astrocytes, Vol. 1, Orlando, Acadedemic Press.

    Google Scholar 

  97. Lakatos, A., Franklin, R. J. M., and Barnett, S. C. 2000. Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes. Glia 32:214-225.

    PubMed  Google Scholar 

  98. Gudiño-Cabrera, G. and Nieto-Sampedro, M. 1996. Ensheathing cells: Large scale purification from adult olfactory bulb, freeze-preservation and migration of transplanted cells in adult brain. Restor. Neurol. Neurosci. 10:25-34.

    Google Scholar 

  99. Fraher, J. P. 2000. The transitional zone and CNS regeneration. J. Anat 196:137-158.

    PubMed  Google Scholar 

  100. Nieto-Sampedro, M. and Ramón-Cueto, A. 1993. Transplants of ensheathing cells facilitate sensory fiber ingrowth and regeneration into adult spinal cord. Eur. J. Physiol. 427 (suppl. 1):R51.

    Google Scholar 

  101. Guénard, V., Kleitman, N., Morrissey, T. K., Bunge, R. P., and Aebischer P. 1992. Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J. Neurosci. 12:3310-3320.

    PubMed  Google Scholar 

  102. Keely, R., Atagi, T., Sabelman, E., Padilla, J., Kadlcik, P., Agras, J., Eng, L., Wiedman, T. W., Nguyen, K., Sudekum, A., and Rosen, J. 1993. Synthetic nerve graft containing collagen and synthetic Schwann cells improves functional, electrophysiological, and histological parameters of peripheral nerve regeneration. Restor. Neurol. Neurosci. 5:353-366.

    Google Scholar 

  103. Kim, D. H., Connolly, S. E., Kline, D. G., et al. 1994. Labeled Schwann cells transplants versus sural nerve grafts in nerve repair. J. Neurosurg. 80:254-260.

    PubMed  Google Scholar 

  104. Levi, A., Sonntag, V., Dickman, C., Mather, J., Li, R. H., Cordoba, S. C., Bichard, B., and Berens M. 1997. The role of cultured Schwann cells grafts in the repair of gaps within the peripheral nervous system of primates. Exp. Neurol. 143:25-36.

    PubMed  Google Scholar 

  105. Ansselin, A. D., Fink, T., and Darvey, D. F. 1997. Peripheral nerve regeneration through nerve guides seeded with adult Schwann cells. Neuropathol. Appl. Neurobiol. 23:387-398.

    PubMed  Google Scholar 

  106. Verdú, E., Navarro, X., Gudiño-Cabrera, G., Rodríguez, F. J., Ceballos, D., Valero, A., and Nieto-Sampedro, M. 1999. Olfactory bulb ensheathing cells enhance peripheral nerve regeneration. Neuroreport 10:1097-1101.

    PubMed  Google Scholar 

  107. Taylor, J. S., Muñetón, W. S., Bui, C., Gudiño-Cabrera, G., and Nieto-Sampedro, M. 1999. Reparacion funcional del sistema sensorial tras rizotomía del plexo braquial mediada por transplantes de glia envolvente. Rev. Neurol. 30:256.

    Google Scholar 

  108. Taylor, J. S., Muñetón-Gómez, V. C., Eguía-Recuero, R., and Nieto-Sampedro, M. 2001. Transplants of olfactory bulb ensheathing cells promote functional repair of multiple dorsal rhizotomy. Prog. Brain Res. 132:651-664.

    Google Scholar 

  109. Navarro, X., Valero, A., Gudiño, G., Forés, J., Rodríguez, F. J., Verdú, E., Pascual, R., Cuadras, J., and Nieto-Sampedro, M. 1998. Ensheathing glial cells promote functional regeneration after lumbar rhizotomy. Eur. J. Neurosci. 10(suppl 10):108.

    Google Scholar 

  110. Navarro X., Valero A., Gudiño-Cabrera G., Fores J., Rodriguez F. J., Verdu E., Pascual R., Cuadras J., and Nieto-Sampedro M. 1999. Ensheathing glia transplants promote dorsal root regeneration and spinal reflex restitution after multiple lumbar rhizotomy. Ann. Neurol. 45:207-215.

    PubMed  Google Scholar 

  111. Pascual, J. I., Gudiño-Cabrera, G., Insausti, R., and Nieto-Sampedro, M. 1997. Loss and restoration of rat urinary bladder function after lumbosacral rhizotomy and ensheathing glia transplantation. Soc. Neurosci. Abstr. 23:1720.

    Google Scholar 

  112. Pascul, J. I., Gudiño-Cabrera, G., Insausti, R., and Nieto-Sampedro, M. 2002. Spinal implants of olfactory ensheathing cells promote axon regeneration and bladder activity after bilateral lumbosacral dorsal rhizotomy in the adult rat. J. Urol. 167:1522-1526.

    PubMed  Google Scholar 

  113. Hunt, S. P., Pini, A., and Evan, G. 1987. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328:632-634.

    PubMed  Google Scholar 

  114. Prieto, M., Chauvet, N., and Alonso, G. 2000. Tanycytes transplanted into the adult rat spinal cord support the regeneration of lesioned axons. Exp. Neurol. 161:27-37.

    PubMed  Google Scholar 

  115. Delgado-García, J. M., del Pozo, F., and Baker, R. 1986. Behavior of neurons in the abducens nucleus of the alert cat: II. Internuclear neurons. Neuroscience 17:953-973.

    PubMed  Google Scholar 

  116. Gudiño-Cabrera, G., Pastor, A. M., de la Cruz, R. R., Delgado-García, J. M. and Nieto-Sampedro, M. 2000. Limits to the capacity of olfactory ensheathing glia to promote axonal regrowth in the CNS. Neuroreport 11:467-471.

    PubMed  Google Scholar 

  117. Li, Y., Decherchi, P. and Raisman, G. 2003. Transplantation of olfactory ensheathing cells into spinal cord lesions restores breathing and climbing. J. Neurosci. 23:727-731.

    PubMed  Google Scholar 

  118. Dawson, M. R. L., Levine, J. L., and Reynolds, R. 2000. NG2-expressing cells in the central nervous system: Are they oligodendroglial progenitors? J. Neurosci. Res. 61:471-479.

    PubMed  Google Scholar 

  119. Dou, C. L. and Levine, J. M. 1994. Inhibition of neurite growth by the NG2 chondroitin sulfate proteoglycan. J. Neurosci. 14:7616-7628.

    PubMed  Google Scholar 

  120. Fidler, P. S., Schuette, K., Asher, R. A., Dobbertin, A., Thornton, S. R., Calle-Patiño, Y., Muir, E., Levine, J. M., Geller, H. M., Rogers, J. H., Faissner, A., and Fawcett, J. W. 1999. Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: The major axon-inhibitory proteoglycan is NG2. J. Neurosci. 19:8778-8789.

    PubMed  Google Scholar 

  121. Rauch, U., Karthikeyan, L., Maurel, P., Margolis, R. U., and Margolis, R. K. (1992) Cloning and primary structure of neurocan, a developmentally regulated, aggregatin chondroitin sulfate proteoglycan of brain. J. Biol. Chem. 267:19536-19547.

    PubMed  Google Scholar 

  122. Friedlander, D., Milev, P., Karthikeyan, L., Margolis, R. K., Margolis, R. U., and Grumet, M. 1994. The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. J. Cell Biol. 125:669-680.

    PubMed  Google Scholar 

  123. Thon, N., Haas, C. A., Rauch, U., Merten, T., Fässler, R., Frotscher, M., and Deller, T. 2000. The chondroitin sulphate proteoglycan brevican is upregulated by astrocytes after entorhinal cortex lesions in adult rats. Eur. J. Neurosci. 12:2547-2558.

    PubMed  Google Scholar 

  124. Yamada, H., Watanabe, K., Shimonaka, M., and Yamaguchi, Y. 1994. Molecular cloning of brevican, a novel brain proteoglycan of the aggrecan/versican family. J. Biol. Chem. 269:10119-10126.

    PubMed  Google Scholar 

  125. Yamada, H., Fredette, B., Shitara, K., Hagihara, K., Miura, R., Ranscht, B., Stallcup, W. B., and Yamaguchi, Y. 1997. The brain chondroitin sulfate proteoglycan brevican associates with astrocytes ensheathing cerebellar glomeruli and inhibits neurite outgrowth from granule neurons. J. Neurosci. 17:7784-7795.

    PubMed  Google Scholar 

  126. Noonan, D. M., Fulle, A., Valente, P., Cai, S., Horigan, E., Sasaki, M., Yamada, Y., and Hassell, J. R. 1991. The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein receptor, and the neural cell adhesion molecule. J. Biol. Chem. 266:22939-22947.

    PubMed  Google Scholar 

  127. Shioi, J., Pangalos, M. N., Ripellino, J. A., Vassilacopoulou, D., Mytilineou, C., Margolis, R. U., and Robakis, N. K. 1995. The Alzheimer amyloid precursor proteoglycan (Appican) is present in brain and is produced by astrocytes but not by neurons in primary neural cultures. J. Biol. Chem. 270:11839-11844.

    PubMed  Google Scholar 

  128. Karthikeyan, L., Flad, M., Engel, M., Meyer-Puttlitz, B., Margolis, R. U., and Margolis, R. K. 1994. Immunocytochemical and in situ hybridization studies of the heparan sulfate proteoglycan, glypican, in nervous tissue. J. Cell Sci. 107:3213-3222.

    PubMed  Google Scholar 

  129. Saunders, S., Paine-Saunders, S., and Lander, A. D. 1997. Expression of the cell surface proteoglycan glypican-5 is developmentally regulated in kidney, limb and brain. Dev. Biol. 190:78-93.

    PubMed  Google Scholar 

  130. Maurel, P., Rauch, U., Flad, M., Margolis, R. K., and Margolis, R. U. 1994. Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of a receptor-type protein tyrosine phosphatase. Proc. Nat. Acad. Sci. USA 91:2512-2516.

    PubMed  Google Scholar 

  131. Garwood, J., Schnädelbach, O., Clement, A., Schütte, K., Bach, A., and Faissner, A. 1999. DSD-1-proteoglycan is the mouse homolog of phosphacan and displays opposing effects on neurite outgrowth dependent on neuronal lineage. J. Neurosci. 19:3888-3899.

    PubMed  Google Scholar 

  132. Kojima, T., Shworak, N. W., and Rosenberg, R. D. 1992. Molecular cloning and expression of two distinct cDNA-encoding heparan sulphate proteoglycan core proteins from a rat endothelial line. J. Biol. Chem. 267:4870-4877.

    PubMed  Google Scholar 

  133. David, G., van der Schueren, B., Marynen, P., Cassiman, J. J., and van der Berghe, H. 1992. Molecular cloning of amphiglycan, a novel integral membrane heparan sulfate proteoglycan expressed by epithelial and fibroblastic cells. J. Cell Biol. 118:961-969.

    PubMed  Google Scholar 

  134. Chang, D., Woo, J. S., Campanelli, J., Scheller, R. H., and Ignatius, M. J. 1997. Agrin inhibits neurite outgrowth but promotes attachment of embryonic motor and sensory neurons. Dev. Biol. 181:21-35.

    PubMed  Google Scholar 

  135. Tsuzuki, S. Kojima, T. Katsumi, A., Yamazaki, T., Sugiura, I., and Saito, H. 1997. Molecular cloning, genomic organization, promoter activity, and tissue-specific expression of the mouse ryudocan gene. J. Biochem. (Tokyo) 122:17-24.

    Google Scholar 

  136. Watanabe, E., Maeda, N., Matsui, F., Kushima, Y., Noda, M., and Oohira, A. 1995. Neuroglycan C, a novel membrane-spanning chondroitin sulfate proteoglycan that is restricted to the brain. J. Biol. Chem. 270:26876-26882.

    PubMed  Google Scholar 

  137. Carey, D. J. 1997. Syndecans: Multifunctional cell-surface co-receptors. Biochem. J. 327:1-16.

    PubMed  Google Scholar 

  138. Hsueh, Y.-P. and Sheng, M. 1999. Regulated expression and subcellular localization of syndecan heparan sulfate proteoglycans and the syndecan-binding protein CASK/LIN-2 during rat brain development. J. Neurosci. 19:7415-7425.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieto-Sampedro, M. Central Nervous System Lesions That Can and Those That Cannot Be Repaired with the Help of Olfactory Bulb Ensheathing Cell Transplants. Neurochem Res 28, 1659–1676 (2003). https://doi.org/10.1023/A:1026056921037

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026056921037

Navigation