Skip to main content

A Peripheral Alternative to Central Nervous System Myelin Repair

  • Chapter
  • First Online:
Myelin Repair and Neuroprotection in Multiple Sclerosis

Abstract

The use of peripheral nervous system (PNS) Schwann cells (SC) in central nervous system (CNS) repair has been an intensely studied strategy to support and myelinate regenerating axons (reviewed in Lavdas et al. 2008; Oudega et al. 2006). For myelin repair, likewise, SC-based strategy presented several advantages over the use of oligodendrocytes precursors (OPC) or CNS stem cells. Indeed, while newly formed oligodendrocytes and the myelin they make remain as targets of inflammatory attacks, new peripheral myelin is preserved. Additionally, the thickness of newly formed PNS myelin is closer to developmental CNS myelin than newly formed central myelin seen on remyelination of CNS axons. Furthermore, internodal lengths generated by exogenous SC-derived myelin resemble intact endogenous myelin internodes more closely from a morphological point of view, than newly formed ones. For these reasons, the use of SC transplantation in demyelinating lesions has been extensively explored during the past decades. More recently, olfactory ensheathing cells (OEC) then multipotent or pluripotent stem/precursor cells emerged as candidates of interest to generate peripheral myelin around CNS axons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afshari FT, Kwok JC, Fawcett JW (2010) Astrocyte-produced ephrins inhibit Schwann cell migration via VAV2 signaling. J Neurosci 30:4246–4255

    PubMed  CAS  Google Scholar 

  • Agudo M, Woodhoo A, Webber D, Mirsky R, Jessen KR, McMahon SB (2008) Schwann cell precursors transplanted into the injured spinal cord multiply, integrate and are permissive for axon growth. Glia 56:1263–1270

    PubMed  CAS  Google Scholar 

  • Akiyama Y, Honmou O, Kato T, Uede T, Hashi K, Kocsis JD (2001) Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol 167:27–39

    PubMed  CAS  Google Scholar 

  • Akiyama Y, Radtke C, Honmou O, Kocsis JD (2002a) Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39:229–236

    PubMed  Google Scholar 

  • Akiyama Y, Radtke C, Kocsis JD (2002b) Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci 22:6623–6630

    PubMed  CAS  Google Scholar 

  • Amberger VR, Avellana-Adalid V, Hensel T, Baron-van Evercooren A, Schwab ME (1997) Oligodendrocyte-type 2 astrocyte progenitors use a metalloendoprotease to spread and migrate on CNS myelin. Eur J Neurosci 9:151–162

    PubMed  CAS  Google Scholar 

  • Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S, Hoffman RM (2005) Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci USA 102:17734–17738

    PubMed  CAS  Google Scholar 

  • Andrews MR, Stelzner DJ (2007) Evaluation of olfactory ensheathing and schwann cells after implantation into a dorsal injury of adult rat spinal cord. J Neurotrauma 24:1773–1792

    PubMed  Google Scholar 

  • Aquino JB, Hjerling-Leffler J, Koltzenburg M, Edlund T, Villar MJ, Ernfors P (2006) In vitro and in vivo differentiation of boundary cap neural crest stem cells into mature Schwann cells. Exp Neurol 198:438–449

    PubMed  CAS  Google Scholar 

  • Ara J, See J, Mamontov P, Hahn A, Bannerman P, Pleasure D, Grinspan JB (2008) Bone morphogenetic proteins 4, 6, and 7 are up-regulated in mouse spinal cord during experimental autoimmune encephalomyelitis. J Neurosci Res 86:125–135

    PubMed  CAS  Google Scholar 

  • Avellana-Adalid V, Bachelin C, Lachapelle F, Escriou C, Ratzkin B, Baron-Van Evercooren A (1998) In vitro and in vivo behaviour of NDF-expanded monkey Schwann cells. Eur J Neurosci 10:291–300

    PubMed  CAS  Google Scholar 

  • Bachelin C, Lachapelle F, Girard C, Moissonnier P, Serguera-Lagache C, Mallet J, Fontaine D, Chojnowski A, Le Guern E, Nait-Oumesmar B, Baron-Van Evercooren A (2005) Efficient myelin repair in the macaque spinal cord by autologous grafts of Schwann cells. Brain 128:540–549

    PubMed  Google Scholar 

  • Bachelin C, Zujovic V, Buchet D, Mallet J, Baron-Van Evercooren A (2010) Ectopic expression of polysialylated neural cell adhesion molecule in adult macaque Schwann cells promotes their migration and remyelination potential in the central nervous system. Brain 133:406–420

    PubMed  CAS  Google Scholar 

  • Baron-Van Evercooren A, Kleinman HK, Ohno S, Marangos P, Schwartz JP, Dubois-Dalcq ME (1982) Nerve growth factor, laminin, and fibronectin promote neurite growth in human fetal sensory ganglia cultures. J Neurosci Res 8:179–193

    PubMed  CAS  Google Scholar 

  • Baron-Van Evercooren A, Gansmuller A, Duhamel E, Pascal F, Gumpel M (1992) Repair of a myelin lesion by Schwann cells transplanted in the adult mouse spinal cord. J Neuroimmunol 40:235–242

    PubMed  CAS  Google Scholar 

  • Baron-Van Evercooren A, Blakemore WF. 2004. Remyelination throughengraftment. In: Lazzarini RA, editor. Myelin biology and disorders,Vol. I. San Diego: Elsevier Academic Press. p 143–61.

    PubMed  CAS  Google Scholar 

  • Barraud P, Seferiadis AA, Tyson LD, Zwart MF, Szabo-Rogers HL, Ruhrberg C, Liu KJ, Baker CV (2010) Neural crest origin of olfactory ensheathing glia. Proc Natl Acad Sci USA 107:21040–21045

    PubMed  CAS  Google Scholar 

  • Biernaskie JA, McKenzie IA, Toma JG, Miller FD (2006) Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny. Nat Protoc 1:2803–2812

    PubMed  CAS  Google Scholar 

  • Biernaskie J, Sparling JS, Liu J, Shannon CP, Plemel JR, Xie Y, Miller FD, Tetzlaff W (2007) Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury. J Neurosci 27:9545–9559

    PubMed  CAS  Google Scholar 

  • Blakemore WF (1977) Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature 266:68–69

    PubMed  CAS  Google Scholar 

  • Blakemore WF, Crang AJ, Curtis R (1986) The interaction of Schwann cells with CNS axons in regions containing normal astrocytes. Acta Neuropathol 71:295–300

    PubMed  CAS  Google Scholar 

  • Boyd JG, Lee J, Skihar V, Doucette R, Kawaja MD (2004) LacZ-expressing olfactory ensheathing cells do not associate with myelinated axons after implantation into the compressed spinal cord. Proc Natl Acad Sci USA 101:2162–2166

    PubMed  CAS  Google Scholar 

  • Brierley CM, Crang AJ, Iwashita Y, Gilson JM, Scolding NJ, Compston DA, Blakemore WF (2001) Remyelination of demyelinated CNS axons by transplanted human schwann cells: the deleterious effect of contaminating fibroblasts. Cell Transplant 10:305–315

    PubMed  CAS  Google Scholar 

  • Brinkmann BG, Agarwal A, Sereda MW, Garratt AN, Muller T, Wende H, Stassart RM, Nawaz S, Humml C, Velanac V, Radyushkin K, Goebbels S, Fischer TM, Franklin RJ, Lai C, Ehrenreich H, Birchmeier C, Schwab MH, Nave KA (2008) Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 59:581–595

    PubMed  CAS  Google Scholar 

  • Brockes JP, Fields KL, Raff MC (1979) Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res 165:105–118

    PubMed  CAS  Google Scholar 

  • Brook GA, Lawrence JM, Raisman G (1993) Morphology and migration of cultured Schwann cells transplanted into the fimbria and hippocampus in adult rats. Glia 9:292–304

    PubMed  CAS  Google Scholar 

  • Chambers SM, Studer L (2011) Cell fate plug and play: direct reprogramming and induced pluripotency. Cell 145:827–830

    PubMed  CAS  Google Scholar 

  • Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280

    PubMed  CAS  Google Scholar 

  • Clewes O, Narytnyk A, Gillinder KR, Loughney AD, Murdoch AP, Sieber-Blum M (2011) Human epidermal neural crest stem cells (hEPI-NCSC) – characterization and directed differentiation into osteocytes and melanocytes. Stem Cell Rev 7(4):799–814

    PubMed  Google Scholar 

  • Crang AJ, Gilson JM, Li WW, Blakemore WF (2004) The remyelinating potential and in vitro differentiation of MOG-expressing oligodendrocyte precursors isolated from the adult rat CNS. Eur J Neurosci 20:1445–1460

    PubMed  CAS  Google Scholar 

  • Deng C, Gorrie C, Hayward I, Elston B, Venn M, Mackay-Sim A, Waite P (2006) Survival and migration of human and rat olfactory ensheathing cells in intact and injured spinal cord. J Neurosci Res 83:1201–1212

    PubMed  CAS  Google Scholar 

  • Devon R, Doucette R (1992) Olfactory ensheathing cells myelinate dorsal root ganglion neurites. Brain Res 589:175–179

    PubMed  CAS  Google Scholar 

  • Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H (2001) Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci 14:1771–1776

    PubMed  CAS  Google Scholar 

  • Dombrowski MA, Sasaki M, Lankford KL, Kocsis JD, Radtke C (2006) Myelination and nodal formation of regenerated peripheral nerve fibers following transplantation of acutely prepared olfactory ensheathing cells. Brain Res 1125:1–8

    PubMed  CAS  Google Scholar 

  • Doucette R (1991) PNS-CNS transitional zone of the first cranial nerve. J Comp Neurol 312:451–466

    PubMed  CAS  Google Scholar 

  • Duncan ID, Aguayo AJ, Bunge RP, Wood PM (1981) Transplantation of rat Schwann cells grown in tissue culture into the mouse spinal cord. J Neurol Sci 49:241–252

    PubMed  CAS  Google Scholar 

  • Dunning MD, Kettunen MI, Ffrench Constant C, Franklin RJ, Brindle KM (2006) Magnetic resonance imaging of functional Schwann cell transplants labelled with magnetic microspheres. Neuroimage 31:172–180

    PubMed  Google Scholar 

  • Fairless R, Frame MC, Barnett SC (2005) N-cadherin differentially determines Schwann cell and olfactory ensheathing cell adhesion and migration responses upon contact with astrocytes. Mol Cell Neurosci 28:253–263

    PubMed  CAS  Google Scholar 

  • Fernandes KJ, McKenzie IA, Mill P, Smith KM, Akhavan M, Barnabe-Heider F, Biernaskie J, Junek A, Kobayashi NR, Toma JG, Kaplan DR, Labosky PA, Rafuse V, Hui CC, Miller FD (2004) A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 6:1082–1093

    PubMed  CAS  Google Scholar 

  • Fernandes KJ, Kobayashi NR, Gallagher CJ, Barnabe-Heider F, Aumont A, Kaplan DR, Miller FD (2006) Analysis of the neurogenic potential of multipotent skin-derived precursors. Exp Neurol 201:32–48

    PubMed  Google Scholar 

  • Feron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S, Geraghty T, Mackay-Sim A (2005) Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128:2951–2960

    PubMed  CAS  Google Scholar 

  • Forni PE, Taylor-Burds C, Melvin VS, Williams T, Wray S (2011) Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells. J Neurosci 31:6915–6927

    PubMed  CAS  Google Scholar 

  • Franceschini IA, Barnett SC (1996) Low-affinity NGF-receptor and E-N-CAM expression define two types of olfactory nerve ensheathing cells that share a common lineage. Dev Biol 173:327–343

    PubMed  CAS  Google Scholar 

  • Franklin RJ, Barnett SC (2000) Olfactory ensheathing cells and CNS regeneration: the sweet smell of success? Neuron 28:15–18

    PubMed  CAS  Google Scholar 

  • Franklin RJ, Crang AJ, Blakemore WF (1991) Transplanted type-1 astrocytes facilitate repair of demyelinating lesions by host oligodendrocytes in adult rat spinal cord. J Neurocytol 20:420–430

    PubMed  CAS  Google Scholar 

  • Franklin RJ, Crang AJ, Blakemore WF (1993) The reconstruction of an astrocytic environment in glia-deficient areas of white matter. J Neurocytol 22:382–396

    PubMed  CAS  Google Scholar 

  • Franklin RJ, Gilson JM, Franceschini IA, Barnett SC (1996) Schwann cell-like myelination following transplantation of an olfactory bulb-ensheathing cell line into areas of demyelination in the adult CNS. Glia 17:217–224

    PubMed  CAS  Google Scholar 

  • Garcia-Alias G, Lopez-Vales R, Fores J, Navarro X, Verdu E (2004) Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat. J Neurosci Res 75:632–641

    PubMed  CAS  Google Scholar 

  • Girard C, Bemelmans AP, Dufour N, Mallet J, Bachelin C, Nait-Oumesmar B, Baron-Van Evercooren A, Lachapelle F (2005) Grafts of brain-derived neurotrophic factor and neurotrophin 3-transduced primate Schwann cells lead to functional recovery of the demyelinated mouse spinal cord. J Neurosci 25:7924–7933

    PubMed  CAS  Google Scholar 

  • Glaser T, Brose C, Franceschini I, Hamann K, Smorodchenko A, Zipp F, Dubois-Dalcq M, Brustle O (2007) Neural cell adhesion molecule polysialylation enhances the sensitivity of embryonic stem cell-derived neural precursors to migration guidance cues. Stem Cells 25:3016–3025

    PubMed  CAS  Google Scholar 

  • Golden KL, Pearse DD, Blits B, Garg MS, Oudega M, Wood PM, Bunge MB (2007) Transduced Schwann cells promote axon growth and myelination after spinal cord injury. Exp Neurol 207:203–217

    PubMed  CAS  Google Scholar 

  • Grimpe B, Silver J (2004) A novel DNA enzyme reduces glycosaminoglycan chains in the glial scar and allows microtransplanted dorsal root ganglia axons to regenerate beyond lesions in the spinal cord. J Neurosci 24:1393–1397

    PubMed  CAS  Google Scholar 

  • Gueye Y, Ferhat L, Sbai O, Bianco J, Ould-Yahoui A, Bernard A, Charrat E, Chauvin JP, Risso JJ, Feron F, Rivera S, Khrestchatisky M (2011) Trafficking and secretion of matrix metalloproteinase-2 in olfactory ensheathing glial cells: a role in cell migration? Glia 59:750–770

    PubMed  Google Scholar 

  • Gurdon JB (2006) From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation. Annu Rev Cell Dev Biol 22:1–22

    PubMed  CAS  Google Scholar 

  • Hinks GL, Chari DM, O’Leary MT, Zhao C, Keirstead HS, Blakemore WF, Franklin RJ (2001) Depletion of endogenous oligodendrocyte progenitors rather than increased availability of survival factors is a likely explanation for enhanced survival of transplanted oligodendrocyte progenitors in X-irradiated compared to normal CNS. Neuropathol Appl Neurobiol 27:59–67

    PubMed  CAS  Google Scholar 

  • Hjerling-Leffler J, Marmigere F, Heglind M, Cederberg A, Koltzenburg M, Enerback S, Ernfors P (2005) The boundary cap: a source of neural crest stem cells that generate multiple sensory neuron subtypes. Development 132:2623–2632

    PubMed  CAS  Google Scholar 

  • Honmou O, Felts PA, Waxman SG, Kocsis JD (1996) Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells. J Neurosci 16:3199–3208

    PubMed  CAS  Google Scholar 

  • Hotta R, Pepdjonovic L, Anderson RB, Zhang D, Bergner AJ, Leung J, Pebay A, Young HM, Newgreen DF, Dottori M (2009) Small-molecule induction of neural crest-like cells derived from human neural progenitors. Stem Cells 27:2896–2905

    PubMed  CAS  Google Scholar 

  • Hu X, Hicks CW, He W, Wong P, Macklin WB, Trapp BD, Yan R (2006) Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci 9:1520–1525

    PubMed  CAS  Google Scholar 

  • Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386

    PubMed  CAS  Google Scholar 

  • Imaizumi T, Lankford KL, Waxman SG, Greer CA, Kocsis JD (1998) Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. J Neurosci 18:6176–6185

    PubMed  CAS  Google Scholar 

  • Iwashita Y, Blakemore WF (2000) Areas of demyelination do not attract significant numbers of schwann cells transplanted into normal white matter. Glia 31:232–240

    PubMed  CAS  Google Scholar 

  • Iwashita Y, Fawcett JW, Crang AJ, Franklin RJ, Blakemore WF (2000) Schwann cells transplanted into normal and X-irradiated adult white matter do not migrate extensively and show poor long-term survival. Exp Neurol 164:292–302

    PubMed  CAS  Google Scholar 

  • Jeffery ND, Lakatos A, Franklin RJ (2005) Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury. J Neurotrauma 22:1282–1293

    PubMed  Google Scholar 

  • Jiang X, Gwye Y, McKeown SJ, Bronner-Fraser M, Lutzko C, Lawlor ER (2009) Isolation and characterization of neural crest stem cells derived from in vitro-differentiated human embryonic stem cells. Stem Cells Dev 18:1059–1070

    PubMed  CAS  Google Scholar 

  • Kaneko S, Iwanami A, Nakamura M, Kishino A, Kikuchi K, Shibata S, Okano HJ, Ikegami T, Moriya A, Konishi O, Nakayama C, Kumagai K, Kimura T, Sato Y, Goshima Y, Taniguchi M, Ito M, He Z, Toyama Y, Okano H (2006) A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat Med 12:1380–1389

    PubMed  CAS  Google Scholar 

  • Kato T, Honmou O, Uede T, Hashi K, Kocsis JD (2000) Transplantation of human olfactory ensheathing cells elicits remyelination of demyelinated rat spinal cord. Glia 30:209–218

    PubMed  CAS  Google Scholar 

  • Keilhoff G, Stang F, Goihl A, Wolf G, Fansa H (2006) Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol 26:1235–1252

    PubMed  Google Scholar 

  • Keirstead HS, Ben-Hur T, Rogister B, O’Leary MT, Dubois-Dalcq M, Blakemore WF (1999) Polysialylated neural cell adhesion molecule-positive CNS precursors generate both oligodendrocytes and Schwann cells to remyelinate the CNS after transplantation. J Neurosci 19:7529–7536

    PubMed  CAS  Google Scholar 

  • Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K, Ding S (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci USA 108:7838–7843

    PubMed  CAS  Google Scholar 

  • Krampera M, Marconi S, Pasini A, Galie M, Rigotti G, Mosna F, Tinelli M, Lovato L, Anghileri E, Andreini A, Pizzolo G, Sbarbati A, Bonetti B (2007) Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone 40:382–390

    PubMed  CAS  Google Scholar 

  • Kromer LF, Cornbrooks CJ (1985) Transplants of Schwann cell cultures promote axonal regeneration in the adult mammalian brain. Proc Natl Acad Sci USA 82:6330–6334

    PubMed  CAS  Google Scholar 

  • Kurkinen M, Alitalo K (1979) Fibronectin and procollagen produced by a clonal line of Schwann cells. FEBS Lett 102:64–68

    PubMed  CAS  Google Scholar 

  • La Marca R, Cerri F, Horiuchi K, Bachi A, Feltri ML, Wrabetz L, Blobel CP, Quattrini A, Salzer JL, Taveggia C (2011) TACE (ADAM17) inhibits Schwann cell myelination. Nat Neurosci 14:857–865

    PubMed  Google Scholar 

  • Lakatos A, Franklin RJ, Barnett SC (2000) Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes. Glia 32:214–225

    PubMed  CAS  Google Scholar 

  • Lakatos A, Barnett SC, Franklin RJ (2003a) Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than Schwann cells following transplantation into adult CNS white matter. Exp Neurol 184:237–246

    PubMed  CAS  Google Scholar 

  • Lakatos A, Smith PM, Barnett SC, Franklin RJ (2003b) Meningeal cells enhance limited CNS remyelination by transplanted olfactory ensheathing cells. Brain 126:598–609

    PubMed  Google Scholar 

  • Langford LA, Owens GC (1990) Resolution of the pathway taken by implanted Schwann cells to a spinal cord lesion by prior infection with a retrovirus encoding beta-galactosidase. Acta Neuropathol 80:514–520

    PubMed  CAS  Google Scholar 

  • Lankford KL, Imaizumi T, Honmou O, Kocsis JD (2002) A quantitative morphometric analysis of rat spinal cord remyelination following transplantation of allogenic Schwann cells. J Comp Neurol 443:259–274

    PubMed  Google Scholar 

  • Lankford KL, Sasaki M, Radtke C, Kocsis JD (2008) Olfactory ensheathing cells exhibit unique migratory, phagocytic, and myelinating properties in the X-irradiated spinal cord not shared by Schwann cells. Glia 56:1664–1678

    PubMed  Google Scholar 

  • Lavdas AA, Franceschini I, Dubois-Dalcq M, Matsas R (2006) Schwann cells genetically engineered to express PSA show enhanced migratory potential without impairment of their myelinating ability in vitro. Glia 53:868–878

    PubMed  Google Scholar 

  • Lavdas AA, Papastefanaki F, Thomaidou D, Matsas R (2008) Schwann cell transplantation for CNS repair. Curr Med Chem 15:151–160

    PubMed  CAS  Google Scholar 

  • Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T, Tabar V, Studer L (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 25:1468–1475

    PubMed  CAS  Google Scholar 

  • Lee G, Chambers SM, Tomishima MJ, Studer L (2010) Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc 5:688–701

    PubMed  CAS  Google Scholar 

  • Levi AD (1996) Characterization of the technique involved in isolating Schwann cells from adult human peripheral nerve. J Neurosci Methods 68:21–26

    PubMed  CAS  Google Scholar 

  • Levi AD, Bunge RP (1994) Studies of myelin formation after transplantation of human Schwann cells into the severe combined immunodeficient mouse. Exp Neurol 130:41–52

    PubMed  CAS  Google Scholar 

  • Li HY, Say EH, Zhou XF (2007) Isolation and characterization of neural crest progenitors from adult dorsal root ganglia. Stem Cells 25:2053–2065

    PubMed  CAS  Google Scholar 

  • Lima C, Pratas-Vital J, Escada P, Hasse-Ferreira A, Capucho C, Peduzzi JD (2006) Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med 29:191–203, discussion 196–204

    PubMed  Google Scholar 

  • Lu J, Ashwell K. Olfactory ensheathing cells: their potential use for repairing the injured spinal cord. Spine (Phila Pa 1976). 2002 Apr 15;27(8):887–92

    PubMed  CAS  Google Scholar 

  • Lu P, Yang H, Culbertson M, Graham L, Roskams AJ, Tuszynski MH (2006) Olfactory ensheathing cells do not exhibit unique migratory or axonal growth-promoting properties after spinal cord injury. J Neurosci 26:11120–11130

    PubMed  CAS  Google Scholar 

  • Markakis EA, Sasaki M, Lankford KL, Kocsis JD (2009) Convergence of cells from the progenitor fraction of adult olfactory bulb tissue to remyelinating glia in demyelinating spinal cord lesions. PLoS One 4:e7260

    PubMed  Google Scholar 

  • Maro GS, Vermeren M, Voiculescu O, Melton L, Cohen J, Charnay P, Topilko P (2004) Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat Neurosci 7:930–938

    PubMed  CAS  Google Scholar 

  • Marshall CT, Guo Z, Lu C, Klueber KM, Khalyfa A, Cooper NG, Roisen FJ (2005) Human adult olfactory neuroepithelial derived progenitors retain telomerase activity and lack apoptotic activity. Brain Res 1045:45–56

    PubMed  CAS  Google Scholar 

  • Marshall CT, Lu C, Winstead W, Zhang X, Xiao M, Harding G, Klueber KM, Roisen FJ (2006) The therapeutic potential of human olfactory-derived stem cells. Histol Histopathol 21:633–643

    PubMed  CAS  Google Scholar 

  • Martin D, Schoenen J, Delree P, Leprince P, Rogister B, Moonen G (1991) Grafts of syngenic cultured, adult dorsal root ganglion-derived Schwann cells to the injured spinal cord of adult rats: preliminary morphological studies. Neurosci Lett 124:44–48

    PubMed  CAS  Google Scholar 

  • Martino G, Franklin RJ, Van Evercooren AB, Kerr DA (2010) Stem cell transplantation in multiple sclerosis: current status and future prospects. Nat Rev Neurol 6:247–255

    PubMed  Google Scholar 

  • McKenzie IA, Biernaskie J, Toma JG, Midha R, Miller FD (2006) Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci 26:6651–6660

    PubMed  CAS  Google Scholar 

  • McTigue DM, Horner PJ, Stokes BT, Gage FH (1998) Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 18:5354–5365

    PubMed  CAS  Google Scholar 

  • Montero-Menei CN, Pouplard-Barthelaix A, Gumpel M, Baron-Van Evercooren A (1992) Pure Schwann cell suspension grafts promote regeneration of the lesioned septo-hippocampal cholinergic pathway. Brain Res 570:198–208

    PubMed  CAS  Google Scholar 

  • Mujtaba T, Mayer-Proschel M, Rao MS (1998) A common neural progenitor for the CNS and PNS. Dev Biol 200:1–15

    PubMed  CAS  Google Scholar 

  • Nagoshi N, Shibata S, Kubota Y, Nakamura M, Nagai Y, Satoh E, Morikawa S, Okada Y, Mabuchi Y, Katoh H, Okada S, Fukuda K, Suda T, Matsuzaki Y, Toyama Y, Okano H (2008) Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell 2:392–403

    PubMed  CAS  Google Scholar 

  • Ogier C, Bernard A, Chollet AM, LE Diquardher T, Hanessian S, Charton G, Khrestchatisky M, Rivera S (2006) Matrix metalloproteinase-2 (MMP-2) regulates astrocyte motility in connection with the actin cytoskeleton and integrins. Glia 54:272–284

    PubMed  Google Scholar 

  • Oudega M, Xu XM (2006) Schwann cell transplantation for repair of the adult spinal cord. J Neurotrauma 23:453–467

    PubMed  Google Scholar 

  • Papastefanaki F, Chen J, Lavdas AA, Thomaidou D, Schachner M, Matsas R (2007) Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury. Brain 130:2159–2174

    PubMed  Google Scholar 

  • Pearse DD, Sanchez AR, Pereira FC, Andrade CM, Puzis R, Pressman Y, Golden K, Kitay BM, Blits B, Wood PM, Bunge MB (2007) Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: survival, migration, axon association, and functional recovery. Glia 55:976–1000

    PubMed  Google Scholar 

  • Plant GW, Christensen CL, Oudega M, Bunge MB (2003) Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord. J Neurotrauma 20:1–16

    PubMed  Google Scholar 

  • Pomp O, Brokhman I, Ben-Dor I, Reubinoff B, Goldstein RS (2005) Generation of peripheral sensory and sympathetic neurons and neural crest cells from human embryonic stem cells. Stem Cells 23:923–930

    PubMed  CAS  Google Scholar 

  • Pomp O, Brokhman I, Ziegler L, Almog M, Korngreen A, Tavian M, Goldstein RS (2008) PA6-induced human embryonic stem cell-derived neurospheres: a new source of human peripheral sensory neurons and neural crest cells. Brain Res 1230:50–60

    PubMed  CAS  Google Scholar 

  • Radtke C, Aizer AA, Agulian SK, Lankford KL, Vogt PM, Kocsis JD (2009) Transplantation of olfactory ensheathing cells enhances peripheral nerve regeneration after microsurgical nerve repair. Brain Res 1254:10–17

    PubMed  CAS  Google Scholar 

  • Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate ­nervous system. Nat Rev Neurosci 9:26–35

    PubMed  CAS  Google Scholar 

  • Rutkowski JL, Kirk CJ, Lerner MA, Tennekoon GI (1995) Purification and expansion of human Schwann cells in vitro. Nat Med 1:80–83

    PubMed  CAS  Google Scholar 

  • Saberi H, Moshayedi P, Aghayan HR, Arjmand B, Hosseini SK, Emami-Razavi SH, Rahimi-Movaghar V, Raza M, Firouzi M (2008) Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci Lett 443:46–50

    PubMed  CAS  Google Scholar 

  • Sailer MH, Hazel TG, Panchision DM, Hoeppner DJ, Schwab ME, McKay RD (2005) BMP2 and FGF2 cooperate to induce neural-crest-like fates from fetal and adult CNS stem cells. J Cell Sci 118:5849–5860

    PubMed  CAS  Google Scholar 

  • Santos-Silva A, Fairless R, Frame MC, Montague P, Smith GM, Toft A, Riddell JS, Barnett SC (2007) FGF/heparin differentially regulates Schwann cell and olfactory ensheathing cell interactions with astrocytes: a role in astrocytosis. J Neurosci 27:7154–7167

    PubMed  CAS  Google Scholar 

  • Sasaki M, Honmou O, Akiyama Y, Uede T, Hashi K, Kocsis JD (2001) Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons. Glia 35:26–34

    PubMed  CAS  Google Scholar 

  • Sasaki M, Lankford KL, Zemedkun M, Kocsis JD (2004) Identified olfactory ensheathing cells transplanted into the transected dorsal funiculus bridge the lesion and form myelin. J Neurosci 24:8485–8493

    PubMed  CAS  Google Scholar 

  • Sasaki M, Lankford KL, Radtke C, Honmou O, Kocsis JD (2011) Remyelination after olfactory ensheathing cell transplantation into diverse demyelinating environments. Exp Neurol 229:88–98

    PubMed  Google Scholar 

  • Shirakabe K, Wakatsuki S, Kurisaki T, Fujisawa-Sehara A (2001) Roles of Meltrin beta/ADAM19 in the processing of neuregulin. J Biol Chem 276:9352–9358

    PubMed  CAS  Google Scholar 

  • Sieber-Blum M, Grim M, Hu YF, Szeder V (2004) Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn 231:258–269

    PubMed  CAS  Google Scholar 

  • Smith PM, Sim FJ, Barnett SC, Franklin RJ (2001) SCIP/Oct-6, Krox-20, and desert hedgehog mRNA expression during CNS remyelination by transplanted olfactory ensheathing cells. Glia 36:342–353

    PubMed  CAS  Google Scholar 

  • Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin M, Bhatia M (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468:521–526.

    PubMed  CAS  Google Scholar 

  • Takagi T, Ishii K, Shibata S, Yasuda A, Sato M, Nagoshi N, Saito H, Okano HJ, Toyama Y, Okano H, Nakamura M (2011) Schwann-spheres derived from injured peripheral nerves in adult mice – their in vitro characterization and therapeutic potential. PLoS One 6:e21497

    PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    PubMed  CAS  Google Scholar 

  • Talbott JF, Cao Q, Enzmann GU, Benton RL, Achim V, Cheng XX, Mills MD, Rao MS, Whittemore SR (2006) Schwann cell-like differentiation by adult oligodendrocyte precursor cells following engraftment into the demyelinated spinal cord is BMP-dependent. Glia 54:147–159

    PubMed  Google Scholar 

  • Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S, Xu X, Esper RM, Loeb JA, Shrager P, Chao MV, Falls DL, Role L, Salzer JL (2005) Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47:681–694

    PubMed  CAS  Google Scholar 

  • Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, Hill CE, Sparling JS, Plemel JR, Plunet WT, Tsai EC, Baptiste D, Smithson LJ, Kawaja MD, Fehlings MG, Kwon BK (2011) A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 28:1611–1682

    PubMed  Google Scholar 

  • Toft A, Tomé M, Lindsay SL, Barnett SC, Riddell JS. Transplant-mediated repair properties of rat olfactory mucosal OM-I and OM-II sphere-forming cells. J Neurosci Res. 2012 Mar;90(3):619-31.

    PubMed  Google Scholar 

  • Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784

    PubMed  CAS  Google Scholar 

  • Toma JG, McKenzie IA, Bagli D, Miller FD (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23:727–737

    PubMed  CAS  Google Scholar 

  • Tomé M, Lindsay SL, Riddell JS, Barnett SC. Identification of nonepithelial multipotent cells in the embryonic olfactory mucosa. Stem Cells. 2009 Sep;27(9):2196–208.

    PubMed  CAS  Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    PubMed  CAS  Google Scholar 

  • Vincent AJ, West AK, Chuah MI (2005) Morphological and functional plasticity of olfactory ensheathing cells. J Neurocytol 34:65–80

    PubMed  Google Scholar 

  • Wang A, Tang Z, Park IH, Zhu Y, Patel S, Daley GQ, Li S (2011) Induced pluripotent stem cells for neural tissue engineering. Biomaterials 32:5023–5032

    PubMed  CAS  Google Scholar 

  • Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adam MA, Lassar AB, Miller AD (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci USA 86:5434–5438

    PubMed  CAS  Google Scholar 

  • Wewetzer K, Verdu E, Angelov DN, Navarro X (2002) Olfactory ensheathing glia and Schwann cells: two of a kind? Cell Tissue Res 309:337–345

    PubMed  Google Scholar 

  • Wewetzer K, Radtke C, Kocsis J, Baumgartner W (2011) Species-specific control of cellular proliferation and the impact of large animal models for the use of olfactory ensheathing cells and Schwann cells in spinal cord repair. Exp Neurol 229:80–87

    PubMed  Google Scholar 

  • Winstead W, Marshall CT, Lu CL, Klueber KM, Roisen FJ (2005) Endoscopic biopsy of human olfactory epithelium as a source of progenitor cells. Am J Rhinol 19:83–90

    PubMed  Google Scholar 

  • Wong CE, Paratore C, Dours-Zimmermann MT, Rochat A, Pietri T, Suter U, Zimmermann DR, Dufour S, Thiery JP, Meijer D, Beermann F, Barrandon Y, Sommer L (2006) Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J Cell Biol 175:1005–1015

    PubMed  CAS  Google Scholar 

  • Wood PM (1976) Separation of functional Schwann cells and neurons from normal peripheral nerve tissue. Brain Res 115:361–375

    PubMed  CAS  Google Scholar 

  • Woodhoo A, Sommer L (2008) Development of the Schwann cell lineage: from the neural crest to the myelinated nerve. Glia 56:1481–1490

    PubMed  Google Scholar 

  • Woodhoo A, Sahni V, Gilson J, Setzu A, Franklin RJ, Blakemore WF, Mirsky R, Jessen KR (2007) Schwann cell precursors: a favourable cell for myelin repair in the Central Nervous System. Brain 130:2175–2185

    PubMed  CAS  Google Scholar 

  • Xiao M, Klueber KM, Lu C, Guo Z, Marshall CT, Wang H, Roisen FJ (2005) Human adult olfactory neural progenitors rescue axotomized rodent rubrospinal neurons and promote functional recovery. Exp Neurol 194:12–30

    PubMed  Google Scholar 

  • Xu Y, Liu Z, Liu L, Zhao C, Xiong F, Zhou C, Li Y, Shan Y, Peng F, Zhang C (2008) Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro. BMC Neurosci 9:21

    PubMed  Google Scholar 

  • Yamauchi J, Miyamoto Y, Tanoue A, Shooter EM, Chan JR (2005) Ras activation of a Rac1 exchange factor, Tiam1, mediates neurotrophin-3-induced Schwann cell migration. Proc Natl Acad Sci USA 102:14889–14894

    PubMed  CAS  Google Scholar 

  • Zhou Y, Snead ML (2008) Derivation of cranial neural crest-like cells from human embryonic stem cells. Biochem Biophys Res Commun 376:542–547

    PubMed  CAS  Google Scholar 

  • Ziegler L, Grigoryan S, Yang IH, Thakor NV, Goldstein RS (2011) Efficient generation of schwann cells from human embryonic stem cell-derived neurospheres. Stem Cell Rev 7:394–403

    PubMed  Google Scholar 

  • Zujovic V, Bachelin C, Baron-Van Evercooren A (2007) Remyelination of the central nervous system: a valuable contribution from the periphery. Neuroscientist 13:383–391

    PubMed  CAS  Google Scholar 

  • Zujovic V, Thibaud J, Bachelin C, Vidal M, Coulpier F, Charnay P, Topilko P, Baron-Van Evercooren A (2010) Boundary cap cells are highly competitive for CNS remyelination: fast migration and efficient differentiation in PNS and CNS myelin-forming cells. Stem Cells 28:470–479

    PubMed  CAS  Google Scholar 

  • Zujovic V, Thibaud J, Bachelin C, Vidal M, Deboux C, Coulpier F, Stadler N, Charnay P, Topilko P, Baron-Van Evercooren A (2011) Boundary cap cells are peripheral nervous system stem cells that can be redirected into central nervous system lineages. Proc Natl Acad Sci USA 108:10714–10719

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank INSERM, ARSEP, and ELA who supported the work performed by the authors and all the past and present members of the Baron’s laboratory who made major contributions to the development of this field of research. In particular, we would like to thank Virginia Avellana, François Lachapelle, Corinne Bachelin, and Marie Vidal for their major input in experiments conducted in Paris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baron Van Evercooren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zujovic, V., Van Evercooren, A.B. (2013). A Peripheral Alternative to Central Nervous System Myelin Repair. In: Duncan, I., Franklin, R. (eds) Myelin Repair and Neuroprotection in Multiple Sclerosis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2218-1_6

Download citation

Publish with us

Policies and ethics