Skip to main content
Log in

Estimation of Regional Evapotranspiration by Combining Aircraftand Ground-Based Measurements

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Two methods are examined for combining measurements from instrumented aircraftand towers to estimate regional scale evapotranspiration. Aircraft data provided spatially averaged values of properties of the surface, the evaporative fraction and maximum stomatal conductance. These quantities are less sensitive to meteorological conditions than the turbulent fluxes of heat and water vapour themselves. The methods allowed aircraft data collected over several days to be averaged and thus to reduce the random error associated with the temporal under-sampling inherent in aircraft measurements. Evaporative fraction is estimated directly from the aircraft data, while maximum stomatal conductance is estimated by coupling the Penman–Monteith equation to a simple model relating surface conductance to the incoming shortwave radiation and specific humidity saturation deficit. The spatial averages of evaporative fraction and maximum stomatal conductance can then be used with routine tower data to estimate the regional scale evapotranspiration. Data from aircraft flights and six ground based sites during the OASIS field campaign in south–east New South Wales in 1995 have been used to check the methods. Both the evaporative fraction and the maximum stomatal conductance derived from the aircraft data give information on the spatial variability of the surface energy budget at scales from 10 to 100 km. Daily averaged latent heat fluxes estimated using these methods for the OASIS study region agree with the available observations in quasi-stationary conditions or in weakly non-stationary conditions when the data from several aircraft flights are averaged to reduce the impact of short term imbalances in the surface energy budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benoit, R.: 1977, 'On the Integral of the Surface Layer Profile-Gradient Functions', J. Appl. Meteorol. 16, 859–860.

    Google Scholar 

  • Brutsaert, W. and Mawdsley, J. A.: 1976, 'The Applicability of Planetary Boundary Layer Theory to Calculate Regional Evapotranspiration', Water Resour. Res. 12, 852–857.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. G., Izumi, Y., and Bradley, E. F.: 1971, 'Flux-Profile Relationships in the Atmospheric Surface Layer', J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Cleugh, H. A., Raupach, M. R., Briggs, P. R., and Coppin, P. A.: 2004, 'Regional-Scale Heat and Water Vapour Fluxes in an Agricultural Landscape: An Evaluation of CBL Budget Methods at OASIS', Boundary-Layer Meteorol. 110, 99–137.

    Google Scholar 

  • Denmead, O. T.: 1976, 'Temperate Cereals', in J. L. Monteith (ed.), Vegetation and the Atmosphere, Vol. 2, Academic Press, pp. 1–31.

  • Desjardins, R. L., Macpherson, J. I., Neumann, H., den Hartog, G., and Schuepp, P. H.: 1995, 'Flux Estimates of Latent and Sensible Heat, Carbon Dioxide, and Ozone Using an Aircraft-Tower Combination', Atmos. Environ. 29, 3147–3158.

    Google Scholar 

  • Desjardins, R. L., Schuepp, P. H., MacPherson, J. I., and Buckley, D. J.: 1992, 'Spatial and Temporal Variations of the Fluxes of Carbon Dioxide and Sensible and Latent Heat over the FIFE Site', J. Geophys. Res. 97, 18467–18475.

    Google Scholar 

  • Dunin, F. X., Smith, C. J., Zegelin, S., Leuning, R., Denmend, O. T., and Poss, R.: 2001, 'Water Balance Changes in a Crop Rotation Involving Lucerne', Aust. J. Agric. Res. 52, 247–261.

    Google Scholar 

  • Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, 316 pp.

  • Hacker, J. M. and Schwertfedger, P.: 1988, The FIAMS Research Aircraft Description, FIAMS Technical Report No. 8, Flinders Institute for Atmospheric and Marine Sciences, Adelaide.

    Google Scholar 

  • Horst, T. W. and Weil, J. C.: 1992, 'Footprint Estimation for Scalar Flux Measurements in the Atmospheric Surface Layer', Boundary-Layer Meteorol. 59, 279–296.

    Google Scholar 

  • Isaac, P. R., McAneney, J., Leuning, R., and Hacker, J. M.: 2004, 'Comparison of Aircraft and Ground-Based Flux Measurements during OASIS95', Boundary-Layer Meteorol. 110, 39–67.

    Google Scholar 

  • Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, 289 pp.

  • Kelliher, F. M., Leuning, R., Raupach, M. R., and Schulze, E.-D.: 1995, 'Maximum Conductances for Evaporation from Global Vegetation Types', Agric. For. Meteorol. 73, 1–16.

    Google Scholar 

  • Kelly, R. D., Smith, E. A., and MacPherson J. I.: 1992, 'A Comparison of Surface Sensible and Latent Heat Fluxes from Aircraft and Surface Measurements in FIFE 1987', J. Geophys. Res. 97(D17), 18,445–18,453.

    Google Scholar 

  • Leuning, R., Condon, A. G., Dunin, F. X., Zegelin, S., and Denmead, O. T.: 1994, 'Rainfall Interception and Evaporation from Soil below a Wheat Canopy', Agric. For. Meteorol. 67, 221–238.

    Google Scholar 

  • Leuning, R., Raupach, M. R., Coppin, P. A., Cleugh, H. A., Isaac, P., Denmead, O. T., Dunin, F. X., Zegelin, S., and Hacker, J. M.: 2004, 'Spatial and Temporal Variation in Fluxes of Energy, Water Vapour and Carbon Dioxide during OASIS 1994 and 1995', Boundary-Layer Meteorol. 110, 3–38.

    Google Scholar 

  • Lloyd, C. R., Bessemoulin, P., Cropley, F. D., Culf, A. D., Dolman, A. J., Elbers, J., Heusinkveld, B., Moncreiff, J. B., Monteny, B., and Verhoef, A.: 1997, 'A Comparison of Surface Fluxes at the HAPEX-Sahel Fallow Bush Sites', J. Hydrol. 188–189, 400–425.

    Google Scholar 

  • Mahrt, L., Kotwica, K., Sun, J., MacPherson, J. I., and Desjardins, R. L.: 1998, 'Estimation of Area-Averaged Moisture Flux', Quart. J. Roy. Meteorol. Soc. 124, 2793–2815.

    Google Scholar 

  • Mahrt, L.: 1998, 'Flux Sampling Errors for Aircraft and Towers', J. Atmos. Oceanic Tech. 15, 416–429.

    Google Scholar 

  • Mann, J. and Lenschow, D. H.: 1994, 'Errors in Airborne Flux Measurements', J. Geophys. Res. 99(D7), 14,519–14,526.

    Google Scholar 

  • McNaughton, K. G.: 1994, 'Effective Stomatal and Boundary-Layer Resistances of Heterogeneous Surfaces', Plant Cell Environ. 17, 1061–1068.

    Google Scholar 

  • Monteith, J. L.: 1964, 'Evaporation and Environment', in The State and Movement of Water in Living Organisms. Symposium of the Society of Experimental Biology, Cambridge University Press, Cambridge, pp. 205–234.

    Google Scholar 

  • Oke, T.: 1987, Boundary Layer Climates, Second Edition, Routledge, Cambridge, U.K., 435 pp.

    Google Scholar 

  • Raupach, M. R.: 1991, 'Vegetation-Atmosphere Interaction in Homogeneous and Heterogeneous Terrain: Some Implications of Mixed-Layered Dynamics', Vegetatio 91, 105–120.

    Google Scholar 

  • Raupach, M. R.: 1995, 'Vegetation-Atmosphere Interaction and Surface Conductance at Leaf, Canopy and Regional Scales', Agric. For. Meteorol. 73, 151–180.

    Google Scholar 

  • Raupach, M. R.: 1998, 'Influences of Local Feedbacks on Land-Air Exchanges of Energy and Carbon', Global Change Biol. 4, 477–494.

    Google Scholar 

  • Raupach, M. R.: 2000, 'Equilibrium Evaporation and the Convective Boundary Layer', Boundary-Layer Meteorol. 96, 107–141.

    Google Scholar 

  • Thom, A. S.: 1975, 'Momentum, Mass and Heat Exchange', in J. L. Monteith (ed.), Vegetation and the Atmosphere, Vol. 1, Academic Press, pp. 57–109.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaac, P.R., Leuning, R., Hacker, J.M. et al. Estimation of Regional Evapotranspiration by Combining Aircraftand Ground-Based Measurements. Boundary-Layer Meteorology 110, 69–98 (2004). https://doi.org/10.1023/A:1026054317990

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026054317990

Navigation