Skip to main content
Log in

Blossoms and Optimal Bases

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

It is now classical to define blossoms by means of intersections of osculating flats. We consider here the most general context of spline spaces with sections in arbitrary extended Chebyshev spaces and with connections defined by arbitrary lower triangular matrices with positive diagonal elements. We show how the existence of blossoms in such spaces automatically leads to optimal bases in the sense of Carnicer and Peña.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Barry, De Boor-Fix dual functionals and algorithms for Tchebychevian B-splines curves, Constr. Approx. 12 (1996) 385–408.

    Google Scholar 

  2. J.-M. Carnicer and J.-M. Peña, Shape preserving representations and optimality of the Bernstein basis, Adv. Comput. Math. 1 (1993) 173–196.

    Google Scholar 

  3. J.-M. Carnicer and J.-M. Peña, Totally positive bases for shape preserving curve design and optimality of B-splines, Comput. Aided Geom. Design 11 (1994) 633–654.

    Google Scholar 

  4. J.-M. Carnicer and J.-M. Peña, Total positivity and optimal bases, in: Total Positivity and its Applications, eds. M. Gasca and C.A. Micchelli (Kluwer Academic, Dordrecht, 1996) pp. 133–155.

    Google Scholar 

  5. P. Costantini, On monotone and convex spline interpolation, Math. Comp. 46 (1986) 203–214.

    Google Scholar 

  6. P. Costantini, Curve and surface construction using variable degree polynomial splines, Comput. Aided Geom. Design 17 (2000) 419–446.

    Google Scholar 

  7. T.N.T. Goodman, Shape preserving representations, in: Mathematical Methods in Computer Aided Geometric Design, eds. T. Lyche and L.L. Schumaker (Academic Press, New York, 1989) pp. 333–357.

    Google Scholar 

  8. T.N.T. Goodman, Total positivity and the shape of curves, in: Total Positivity and its Applications, eds. M. Gasca and C.A. Micchelli (Kluwer Academic, Dordrecht, 1996) pp. 157–186.

    Google Scholar 

  9. T.N.T. Goodman and M.-L. Mazure, Blossoming beyond extended Chebyshev spaces, J. Approx. Theory 109 (2001) 48–81.

    Google Scholar 

  10. T.N.T. Goodman and C.A. Micchelli, Corner cutting algorithms for the Bézier representation of free form curves, Linear Algebra Appl. 99 (1988) 225–252.

    Google Scholar 

  11. T.N.T. Goodman and H.B. Said, Shape preserving properties of the generalized Ball basis, Comput. Aided Geom. Design 8 (1991) 115–121.

    Google Scholar 

  12. P.D. Kaklis and D.G. Pandelis, Convexity preserving polynomial splines of non-uniform degree, IMA J. Numer. Anal. 10 (1990) 223–234.

    Google Scholar 

  13. S. Karlin, Total Positivity (Stanford Univ. Press, Stanford, 1968).

    Google Scholar 

  14. S. Karlin and W.J. Studden, Tchebycheff Systems (Wiley Interscience, New York, 1966).

    Google Scholar 

  15. E. Mainar and J.-M. Peña, Quadratic-cycloidal curves, Preprint.

  16. M.-L. Mazure, Blossoming: a geometrical approach, Constr. Approx. 15 (1999) 33–68.

    Google Scholar 

  17. M.-L. Mazure, Chebyshev-Bernstein bases, Comput. Aided Geom. Design 16 (1999) 649–669.

    Google Scholar 

  18. M.-L. Mazure, Bernstein bases in Müntz spaces, Numer. Algorithms 22 (1999) 285–304.

    Google Scholar 

  19. M.-L. Mazure, Chebyshev splines beyond total positivity, Adv. Comput. Math. 14 (2001) 129–156.

    Google Scholar 

  20. M.-L. Mazure, Quasi-Chebyshev splines with connection matrices. Application to variable degree polynomial splines, Comput. Aided Geom. Design 18 (2001) 287–298.

    Google Scholar 

  21. M.-L. Mazure, B-spline bases and osculating flats: One result of H.-P. Seidel revisited, to appear in Math. Modelling Numer. Anal.

  22. M.-L. Mazure, On the equivalence between existence of B-spline bases and existence of blossoms, Preprint.

  23. M.-L. Mazure and H. Pottmann, Tchebycheff Curves, in: Total Positivity and its Applications, eds. M. Gasca and C.A. Micchelli (Kluwer Academic, Dordrecht, 1996) pp. 187–218.

    Google Scholar 

  24. H. Pottmann, The geometry of Tchebycheffian splines, Comput. Aided Geom. Design 10 (1993) 181–210.

    Google Scholar 

  25. L. Ramshaw, Blossoms are polar forms, Comput. Aided Geom. Design 6 (1989) 323–358.

    Google Scholar 

  26. L.L. Schumaker, Spline Functions (Wiley Interscience, New York, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazure, ML. Blossoms and Optimal Bases. Advances in Computational Mathematics 20, 177–203 (2004). https://doi.org/10.1023/A:1025855123163

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025855123163

Navigation