Skip to main content
Log in

Geometrically continuous piecewise Chebyshevian NU(R)BS

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

By piecewise Chebyshevian splines we mean splines with pieces taken from different Extended Chebyshev spaces all of the same dimension, and with connection matrices at the knots. Within this very large and crucial class of splines, we are more specifically concerned with those which are good for design, in the sense that they possess blossoms, or, equivalently, refinable B-spline bases. In practice, this subclass is known to be characterised by the existence of (infinitely many) piecewise generalised derivatives with respect to which the continuity between consecutive pieces is controlled by identity matrices. Somehow inherent in the previous characterisation, the construction of all associated rational spline spaces creates an equivalence relation between piecewise Chebyshevian spline spaces good for design, among which the famous classical rational splines. We investigate this equivalence relation along with the natural question: Is it or not worthwhile considering the rational framework since it does not enlarge the set of resulting splines? This explains the parentheses inside the acronym NU(R)BS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bangert, C., Prautzsch, H.: Circle and sphere as rational splines. Neural Parallel Sci. Comput. 5, 153–162 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Barry, P.J.: de Boor-Fix dual functionals and algorithms for Tchebycheffian B-splines curves. Constr. Approx. 12, 385–408 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Barsky, B.A.: The beta-spline: a local representation based on shape parameters and fundamental geometric measures. PhD, The University of Utah (1982)

  4. Barsky, B.A.: Rational beta-splines for representing curves and surfaces. IEEE Comput. Graph. Appl. 13, 24–32 (1993)

    Google Scholar 

  5. Barsky, B.A.: Computer Graphics and Geometric Modelling Using Beta-Splines. Springer, Berlin (1988)

    MATH  Google Scholar 

  6. Beccari, C.V., Casciola, G., Mazure, M.-L.: Design or not design? A numerical characterisation for piecewise Chebyshevian splines. Numer. Algorithms 81, 1–31 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Boehm, W.: Rational geometric splines. Comput. Aided Geom. Des. 4, 67–77 (1987)

    MathSciNet  MATH  Google Scholar 

  8. Bosner, T., Rogina, M.: Non-uniform exponential tension splines. Numer. Algorithms 46, 265–294 (2007)

    MathSciNet  MATH  Google Scholar 

  9. de Boor, C.: A Practical Guide to Splines. Springer, New York (1978)

    MATH  Google Scholar 

  10. Dyn, N., Micchelli, C.A.: Piecewise polynomial spaces and geometric continuity of curves. Numer. Math. 54, 319–337 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Farin, G.: Visually C2 cubic splines. Comput. Aided Des. 14, 137–139 (1982)

    Google Scholar 

  12. Farin, G.: From conics to NURBS: a tutorial and survey. IEEE Comput. Graph. Appl. 12, 78–86 (1992)

    Google Scholar 

  13. Farin, G.: NURBS: From Projective Geometry to Practical Use, 2nd edn. A.K. Peters, Natick (1999)

    MATH  Google Scholar 

  14. Fiorot, J.C., Jeannin, P.: Courbes splines rationnelles: applications à la CAO, bibfac.univ-tlemcen.dz (1992)

  15. Goodman, T.N.T.: Properties of β-splines. J. Approx. Theory 44, 132–153 (1985)

    MathSciNet  Google Scholar 

  16. Goodman, T.N.T.: Constructing piecewise rational curves with Frenet frame continuity. Comput. Aided Geom. Des. 7, 15–31 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Gregory, J.A.: Shape preserving rational spline interpolation. In: Graves-Morris, P.R., Saff, E.B., Varga, R.S. (eds.) Rational Approximation and Interpolation, pp. 431–441. Springer, Cham (1984)

    Google Scholar 

  18. Gregory, J.A., Sarfraz, M.: A rational cubic spline with tension. Comput. Aided Geom. Des. 7, 1–13 (1990)

    MathSciNet  MATH  Google Scholar 

  19. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Koch, P.E., Lyche, T.: Exponential B-splines in tension. In: Chui, C.K., Schumaker, L.L., Ward, J.D. (eds.) Approximation Theory VI, pp. 361–364. Academic Press, New York (1989)

    Google Scholar 

  21. Koch, P.E., Lyche, T.: Construction of exponential tension B-splines of arbitrary order. In: Laurent, P.A., Le Méauté, A., Schumaker, L.L. (eds.) Curves and Surfaces, pp. 255–258. Academic Press, New York (1991)

    Google Scholar 

  22. Koch, P.E., Lyche, T.: Interpolation with exponential B-splines in tension. In: Farin, G., Noltemeier, H., Hagen, H., Knödel, W. (eds.) Geometric Modelling, Computing Supplementum, vol. 8. Springer, Vienna (1993)

    Google Scholar 

  23. Lyche, T., Winther, R.: A stable recurrence relation for trigonometric B-splines. J. Approx. Theory 25, 266–279 (1979)

    MathSciNet  MATH  Google Scholar 

  24. Lyche, T., Mazure, M.-L.: Total positivity and the existence of piecewise exponential B-splines. Adv. Comput. Math. 25, 105–133 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Lyche, T., Mazure, M.-L.: Piecewise Chebyshevian multiresolution analysis. East J. Approx. 17, 419–435 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Lyche, T.: A recurrence relation for Chebyshevian B-splines. Constr. Approx. 1, 155–173 (1985)

    MathSciNet  MATH  Google Scholar 

  27. Manni, C., Pelosi, F., Sampoli, M.-L.: Generalized B-splines as a tool in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200, 867–881 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Marsden, M.J.: An identity for spline functions with application to variation-diminishing spline approximation. J. Approx. Theory 3, 7–49 (1970)

    MathSciNet  MATH  Google Scholar 

  29. Marusic, M., Rogina, M.: Sharp error bounds for interpolating splines in tension. J. Comput. Appl. Math. 61, 205–223 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Mazure, M.-L.: Chebyshev splines beyond total positivity. Adv. Comput. Math. 14, 129–156 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Mazure, M.-L.: On the equivalence between existence of B-spline bases and existence of blossoms. Constr. Approx. 20, 603–624 (2004)

    MathSciNet  MATH  Google Scholar 

  32. Mazure, M.-L.: Blossoms and optimal bases. Adv. Comput. Math. 20, 177–203 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Mazure, M.-L.: Ready-to-blossom bases in Chebyshev spaces. In: Jetter, K., Buhmann, M., Haussmann, W., Schaback, R., Stoeckler, J. (eds.) Topics in Multivariate Approximation and Interpolation, pp. 109–148. Elsevier, Amsterdam (2006)

    Google Scholar 

  34. Mazure, M.-L.: Choosing spline spaces for interpolation. In: Dumas, J.-G. (ed.) Proceedings of Transgressive Computing 2006, pp. 311–326 (2006)

  35. Mazure, M.-L.: Bernstein-type operators in Chebyshev spaces. Numer. Algorithms 52, 93–128 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Mazure, M.-L.: Finding all systems of weight functions associated with a given extended Chebyshev space. J. Approx. Theory 163, 363–376 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Mazure, M.-L.: How to build all Chebyshevian spline spaces good for geometric design? Numer. Math. 119, 517–556 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Mazure, M.-L.: Polynomial splines as examples of Chebyshevian splines. Numer. Algorithms 60, 241–262 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Mazure, M.-L.: Extended Chebyshev spaces in rationality. BIT Numer. Math. 53, 1013–1045 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Mazure, M.-L.: Piecewise Chebyshev–Schoenberg operators: shape preservation, approximation and space embedding. J. Approx. Theory 166, 106–135 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Mazure, M.-L.: NURBS or not NURBS? C. R. Acad. Sci. Paris Ser. I 354, 747–750 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Mazure, M.-L.: Piecewise Chebyshevian splines: interpolation versus design. Numer. Algorithms 77, 1213–1247 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Mazure, M.-L.: Constructing totally positive piecewise Chebyhevian B-splines. J. Comput. Appl. Math. 342, 550–586 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Nielson, G.M.: A locally controllable spline with tension for interactive curve design. Comput. Aided Geom. Des. 1, 199–205 (1984)

    MATH  Google Scholar 

  45. Piegl, L.: On NURBS: a survey. IEEE Comput. Graph. Appl. 11, 55–71 (1991)

    Google Scholar 

  46. Piegl, L., Tiller, W.: A menagerie of rational B-spline circles. IEEE Comput. Graph. Appl. 9, 48–56 (1989)

    Google Scholar 

  47. Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, Berlin (1997)

    MATH  Google Scholar 

  48. Piegl, L., Tiller, W., Rajab, K.: It is time to drop the “R” from NURBS. Eng. Comput. (Lond.) 30, 703–714 (2014)

    Google Scholar 

  49. Pottmann, H.: The geometry of Tchebycheffian splines. Comput. Aided Geom. Des. 10, 181–210 (1993)

    MathSciNet  MATH  Google Scholar 

  50. Pruess, S.: An algorithm for computing smoothing splines in tension. Computing 19, 365–373 (1978)

    MathSciNet  MATH  Google Scholar 

  51. Ramshaw, L.: Blossoms are polar forms. Comput. Aided Geom. Des. 6, 323–358 (1989)

    MathSciNet  MATH  Google Scholar 

  52. Schaback, R.: Rational geometric curve interpolation. In: Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods in Computer Aided Geometric Design II, pp. 517–535. Academic Press, New York (1992)

    Google Scholar 

  53. Schoenberg, I.J.: Contributions to the problem of approximation of equidistant data by analytic functions, part A: on the problem of smoothing of graduation, a first class of analytic approximation formulæ. Q. Appl. Math. 4, 45–99 (1946)

    Google Scholar 

  54. Schoenberg, I.J.: On trigonometric spline interpolation. J. Math. Mech. 13, 795–825 (1964)

    MathSciNet  MATH  Google Scholar 

  55. Schoenberg, I.J., Whitney, A.: On Pólya frequency functions, III. Trans. Am. Math. Soc. 74, 246–259 (1953)

    MATH  Google Scholar 

  56. Schumaker, L.L.: On Tchebycheffian spline functions. J. Approx. Theory 18, 278–303 (1976)

    MathSciNet  MATH  Google Scholar 

  57. Schumaker, L.L.: Spline Functions. Wiley, Hoboken (1981)

    MATH  Google Scholar 

  58. Seidel, H.-P.: New algorithms and techniques for computing with geometrically continuous spline curves of arbitrary degree. Math. Model. Numer. Anal. 26, 149–176 (1992)

    MathSciNet  MATH  Google Scholar 

  59. Schweikert, D.G.: An interpolation curve using a spline in tension. J. Math. Phys. 45, 312–317 (1966)

    MathSciNet  MATH  Google Scholar 

  60. Späth, H.: Exponential spline interpolation. Computing 4, 225–233 (1969)

    MathSciNet  MATH  Google Scholar 

  61. Unser, M.: Splines: a perfect fit for signal and image processing. IEEE Signal Proc. Mag. 6, 22–38 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laurence Mazure.

Additional information

Communicated by Tom Lyche.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazure, ML. Geometrically continuous piecewise Chebyshevian NU(R)BS. Bit Numer Math 60, 687–714 (2020). https://doi.org/10.1007/s10543-019-00795-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00795-y

Keywords

Mathematics Subject Classification

Navigation