Skip to main content
Log in

The Spectral Theory of Amenable Actions and Invariants of Discrete Groups

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let G denote a semisimple group, Γ a discrete subgroup, B=G/P the Poisson boundary. Regarding invariants of discrete subgroups we prove, in particular, the following:

(1) For any Γ-quasi-invariant measure η on B, and any probablity measure μ on Γ, the norm of the operator πη(μ) on L 2(B,η) is equal to ∥λΓ(μ)∥, where πη is the unitary representation in L 2(X,η), and λΓ is the regular representation of Γ.

(2) In particular this estimate holds when η is Lebesgue measure on B, a Patterson–Sullivan measure, or a μ-stationary measure, and implies explicit lower bounds for the displacement and Margulis number of Γ (w.r.t. a finite generating set), the dimension of the conformal density, the μ-entropy of the measure, and Lyapunov exponents of Γ.

(3) In particular, when G=PSL2(ℂ) and Γ is free, the new lower bound of the displacement is somewhat smaller than the Culler–Shalen bound (which requires an additional assumption) and is greater than the standard ball-packing bound.

We also prove that ∥πη(μ)∥=∥λG(μ)∥ for any amenable action of G and μ∈L 1(G), and conversely, give a spectral criterion for amenability of an action of G under certain natural dynamical conditions. In addition, we establish a uniform lower bound for the μ-entropy of any measure quasi-invariant under the action of a group with property T, and use this fact to construct an interesting class of actions of such groups, related to 'virtual' maximal parabolic subgroups. Most of the results hold in fact in greater generality, and apply for instance when G is any semi-simple algebraic group, or when Γ is any word-hyperbolic group, acting on their Poisson boundary, for example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, S.: Boundary amenability for hyperbolic groups and an application to smooth dynamics of simple groups, Topology 33 (1994), 765–783.

    Google Scholar 

  2. Albuquerque, P.: Patterson-Sullivan theory in higher rank symmetric spaces, Geom. Funct. Anal. 9 (1999), 1–28.

    Google Scholar 

  3. Anantharaman-Delaroche, C.: On spectral characterizations of amenability, Preprint 2001.

  4. Anantharaman-Delaroche, C. and Renault, J.: Amenable Groupoids, Enseign. Math. Monogr. Ser. 36, 2000.

  5. Billingsley, P.: Probability and Measure, 2nd edn, Wiley, New York, 1986.

    Google Scholar 

  6. Besson, G., Courtois, G. and Gallot, S.: Volume et entropie minimale des espaces localement symmétrique, Invent. Math. 103 (1991), 417–445.

    Google Scholar 

  7. Cowling, M.: Sur les coefficients des représentations unitaires des groupes de Lie simples, In: Lecture Notes in Math. 739, Springer, New York, 1979, pp. 132–178.

    Google Scholar 

  8. Connes, A., Feldman, J. and Weiss, B.: An amenable equivalence relation is generated by a single transformation. Ergodic Theory Dynam. Systems 1 (1981), 431–450.

    Google Scholar 

  9. Cowling, M., Haagerup, U. and Howe, R.: Almost L 2 matrix coefficients, J. Reine Angew. Math. 387 (1988), 97–110.

    Google Scholar 

  10. Culler, M. and Shalen, P. B.: Paradoxical decompositions, 2-generator Kleinian groups, and volumes of hyperbolic 3-manifolds, J. Amer. Math. Soc. 5(2) (1992), 231–289.

    Google Scholar 

  11. Furman, A.: Random walks on groups and random transformations, In: A. Katok and B. Hasselblatt (eds), Handbook of Dynamical Systems, vol. I. To appear.

  12. Furstenberg, H.: A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335–386.

    Google Scholar 

  13. Furstenberg, H.: Noncommuting random products, Trans. Amer. Math. Soc. 108 (1963), 377–428.

    Google Scholar 

  14. Guivarc'h, Y.: Sur loi des grands nombres et le rayon spectral d'une marche aléatoires, Asterisque 74 (1980), 47–98.

    Google Scholar 

  15. Guivarc'h, Y.: Produits de matrices aléatoires et applications aux propriétés géomtriques des sous-groupes du groupe linéare, Ergodic Theory Dynam. Systems 10 (1990), 483–512.

    Google Scholar 

  16. Guivarc'h, Y. and Raugi, A.: Products of random matrices: convergence theorems, In: Contemporary Math. 50, Amer. Math. Soc., Providence, 1986, pp. 31–53.

    Google Scholar 

  17. Guivarc'h, Y., Ji, L. and Taylor, J. C.: Compactifications of Symmetric Spaces, Progr. in Math. 156, Birkhäuser, Basel, 1998.

    Google Scholar 

  18. Gangolli, R. and Varadarajan, V. S.: Harmonic Analysis of Spherical Functions on Real Reductive Groups, Modern Surv. Math. 101, Springer, New York, 1988.

    Google Scholar 

  19. de la Harpe, P. and Valette, A.: Propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque 175, Soc. Math. de France, 1989.

  20. Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.

    Google Scholar 

  21. Helgason, S.: Groups and Geometric Analysis, Academic Press, New York, 1984.

    Google Scholar 

  22. Herz, C. S.: Sur le phénomène de Kunze-Stein. C.R. Acad. Sci. Paris 271 (1970), 491–493.

    Google Scholar 

  23. Hou, Y.: Geometrically infinite negatively curved three manifolds, PhD Thesis, University of Illinois at Chicago, 2000.

  24. Howe, R. and Tan, E. C.: Non-Abelian Harmonic Analysis, Springer, New York, 1992.

    Google Scholar 

  25. Kaimanovich, V. A. and Vershik, A.: Random walks on discrete groups: Boundary and entropy, Ann. Probab. 11 (1983), 457–490.

    Google Scholar 

  26. Kaimanovich, V. A.: The Poisson boundary of groups with hyperbolic properties, Ann. of Math. 152 (2000), 659–692.

    Google Scholar 

  27. Kaimanovich, V. A.: The Poisson boundary of covering Markov operators, Israel J. Math. 89 (1995), 77–134.

    Google Scholar 

  28. Kaimanovich, V. A.: Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds, Ann. Inst. H. Poincaré 53 (1990), 361–393.

    Google Scholar 

  29. Kuhn, M. G.: Amenable actions and weak containment of certain representations of discrete groups. Proc. Amer. Math. Soc. 122(3) (1994), 751–757.

    Google Scholar 

  30. Kullback, S.: Information Theory and Statistics, 2nd edn, Dover, New York, 1968.

    Google Scholar 

  31. Ledrappier, F.: Poisson boundaries of discrete groups of matrices, Israel J. Math. 50 (1985), 319–336.

    Google Scholar 

  32. Ledrappier, F.: Quelques propriétes des exposants charactéristiques, In: Lecture Notes in Math. 1097, Springer, New York, 1982, pp. 306–396.

    Google Scholar 

  33. Ledrappier, F.: Structure au bord des variétés à courbure négative, Séminare de théorie spectrale et géométrie, Grenoble, 1994, pp. 97–122.

  34. Ledrappier, F.: Harmonic measures and Bowen-Margulis measures, Israel J. Math. 71 (1990), 275–287.

    Google Scholar 

  35. Ledrappier, F.: A heat kernel characterization of asymptotic harmonicity, Proc. Amer. Math. Soc. 118 (1993), 1001–1004.

    Google Scholar 

  36. Ledrappier, F.: Sharp estimates for the entropy, In: M. Picardello (ed.), Proc. Internat. Meeting Frascati, 1–10 July 1991, Plenum Press, New York, 1992, pp. 281–288.

    Google Scholar 

  37. Margulis, G. A.: Discrete Subgroups of Semisimple Lie Groups, Modern Surv. Math, 17, Springer, New York, 1991.

    Google Scholar 

  38. Margulis, G. A.: Discrete subgroups of motions of manifolds of non-positive curvature, Amer. Math. Soc. Trans. 109 (1977), 33–45.

    Google Scholar 

  39. Nevo, A.: Amenable actions and actions with property T, MSc Thesis, Hebrew University, 1987 (in Hebrew).

  40. Nevo, A.: A note on property T and factors of Poisson boundaries, Landau Foundation Preprint Series, No. 19, Hebrew University, 1991.

  41. Nevo, A.: Spectral transfer and pointwise ergodic theorems for semi-simple Kazhdan groups, Math. Res. Lett. 5 (1998), 1–21.

    Google Scholar 

  42. Nevo, A.: Group actions with positive μ-entropy, Preprint.

  43. Nevo, A.: Boundary theory and harmonic analysis on boundary-transitive graphs, Amer. J. Math. 116 (1994), 243–282.

    Google Scholar 

  44. Nevo, A.: Displacement of discrete subgroups of semisimple groups, In preparation.

  45. Nevo, A. and Zimmer, R. J.: Homogeneous projective factors for actions of semi-simple Lie groups, Invent. Math. 138 (1999), 229–252.

    Google Scholar 

  46. Nevo, A. and Zimmer, R. J.:Rigidity of Furstenberg entropy for semi-simple Lie group actions. Ann. Sci. École. Norm. Sup. 33 (2000), 321–343.

    Google Scholar 

  47. Nevo, A. and Zimmer, R. J.: A structure theorem for actions of semisimple Lie groups. Ann. of Math. 157 (2002), 1–30.

    Google Scholar 

  48. Oh, H.: Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan's constants, Duke Math. J. 113 (2002), 133–192.

    Google Scholar 

  49. Patterson, S. J.: The limit set of a Fuchsian group, Acta Math. 136 (1976), 241–273.

    Google Scholar 

  50. Spatzier, R. and Zimmer, R. J.: Fundamental groups of negatively curved manifolds and actions of semisimple groups, Topology 30(4) (1991), 591–601.

    Google Scholar 

  51. Sullivan, D.: Discrete conformal groups and measurable dynamics, Bull. Amer. Math. Soc. 6 (1982), 57–63.

    Google Scholar 

  52. Sullivan, D.: The density at infinity of a discrete group of hyperbolic motions, Publ. Math. IHES 50 (1979), 171–202.

    Google Scholar 

  53. Virtser, D. A.: Products of random matrices and operators, Theory Probab. Appl. 24 (1979), 367–377.

    Google Scholar 

  54. Zimmer, R. J.: Ergodic Theory and Semi-Simple Groups, Birkhäuser, Boston, 1984.

    Google Scholar 

  55. Zimmer, R. J.: Amenable ergodic group actions and an application to Poisson boundaries of Random walks. J. Funct. Anal. 27 (1978), 350–372.

    Google Scholar 

  56. Zimmer, R. J.: Induced and amenable actions of Lie groups. Ann. Sci. École Norm. Sup. 11 (1978), 407–428.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevo, A. The Spectral Theory of Amenable Actions and Invariants of Discrete Groups. Geometriae Dedicata 100, 187–218 (2003). https://doi.org/10.1023/A:1025839828396

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025839828396

Navigation