Skip to main content
Log in

Cross correlations between 13C-1H dipolar interactions and 15N chemical shift anisotropy in nucleic acids

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Two sets of cross-correlated relaxation rates involving chemical shift anisotropy and dipolar interactions have been measured in an RNA kissing complex. In one case, both the CSA and dipolar interaction tensors are located on the same nucleotide base and are rigidly fixed with respect to each other. In the other case, the CSA tensor is located on the nucleotide base whereas the dipolar interaction is located on the adjoining ribose unit. Analysis of the measured rates in terms of isotropic or anisotropic rotational diffusion has been carried out for both cases. A marked difference between the two models is observed for the cross-correlation rates involving rigidly fixed spin interactions. The influence of internal motions about the glycosidic linkage between the nucleotide base and the ribose unit on cross-correlated relaxation rates has been estimated by applying a model of restricted rotational diffusion. Local motions seem to have a more pronounced effect on cross-correlated relaxation rates when the two spin interactions are not rigidly fixed with respect to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akke, M., Fiala, R., Jiang, F., Patel, D. and Palmer, A.G. (1997) RNA, 3, 702-709.

    Google Scholar 

  • Anderson-Altmann, K.L., Phung, C.G., Mavromustakos, S., Zheng, Z., Facelli, J.C., Poulter, C.D. and Grant, D.M. (1995) J. Phys. Chem., 99, 10454-10458.

    Google Scholar 

  • Beckers, M.L.M. and Buydens, L.M.C. (1998) J. Comput. Chem., 19, 695-715.

    Google Scholar 

  • Brutscher, B. (2000) Concepts in Magn. Reson., 12, 207-229.

    Google Scholar 

  • Brutscher, B., Skrynnikov, N.R., Bremi, T., Brüschweiler, R. and Ernst, R.R. (1997) J. Magn. Reson., 130, 346-351.

    Google Scholar 

  • Chiarparin, E., Pelupessy, P., Ghose, R. and Bodenhausen, G. (1999) J. Am. Chem. Soc., 121, 6876-6883.

    Google Scholar 

  • Chung, J., Oldfield, E., Thevand, A. and Werbelow, L. (1992) J. Magn. Reson., 100, 69-81.

    Google Scholar 

  • Conner, B.N., Yoon, C., Dickerson, J.L. and Dickerson, R.E. (1984) J. Mol. Biol., 174, 663-695.

    Google Scholar 

  • Dejaegere, A.P. and Case, D.A. (1998) J. Phys. Chem. A, 102, 5280-5289.

    Google Scholar 

  • Dittmer, J., Kim, C. H. and Bodenhausen, G. (2003) J. Biomol. NMR 26, 259-275.

    Google Scholar 

  • Felli, I., Richter, C., Griesinger, C. and Schwalbe, H. (1999) J. Am. Chem. Soc., 121, 1956-1957.

    Google Scholar 

  • Fiala, R., Czernek, J. and Sklenar, V. (2000) J. Biomol. NMR., 16, 291-302.

    Google Scholar 

  • Fratini, A.V., Kopka, M.L., Drew, H.R. and Dickerson, R.E. (1982) J. Biol. Chem., 257, 14686-14707.

    Google Scholar 

  • Gaudin, F., Paquet, F., Chanteloup, L., Beau, J.M., Thuong, N.T. and Lancelot, G. (1995) J. Biomol. NMR, 5, 49-58.

    Google Scholar 

  • Hall, K.B. and Tang, C. (1998) Biochemistry, 37, 9323-9332.

    Google Scholar 

  • Hu, J.Z., Facelli, J.C., Aldermann, D.W., Pugmire, R.J. and Grant, D.M. (1998) J. Am. Chem. Soc., 120, 9863-9869.

    Google Scholar 

  • Kim, C.H. and Tinoco, I. (2000) Proc. Natl. Acad. Sci., 97, 9396-9401.

    Google Scholar 

  • Kumar, A., Grace, R.C.R. and Madhu, P.K. (2000) Prog. Nucl. Magn. Reson. Spectrosc., 37, 191-319.

    Google Scholar 

  • Leppert, J., Heise, B. and Ramachandran, R. (2000) J. Magn. Reson., 145, 307-314.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546-4559.

    Google Scholar 

  • London, R.E. and Avitabile, J. (1978) J. Am. Chem. Soc., 100, 7159-7165.

    Google Scholar 

  • Palmer, A.G. (1997) Curr. Opin. Struct. Biol., 7, 732-737.

    Google Scholar 

  • Palmer, A.G., Williams, J. and McDermott, A. (1996) J. Phys. Chem., 100, 13293-13310.

    Google Scholar 

  • Paquet, F., Gaudin, F. and Lancelot, G. (1996) J. Biomol. NMR., 8, 252-260.

    Google Scholar 

  • Reif, B., Hennig, M. and Griesinger, C. (1997) Science, 276, 1230-1233.

    Google Scholar 

  • Richter, C., Reif, B., Griesinger, C. and Schwalbe, H. (2000) J. Am. Chem. Soc., 122, 12728-12731.

    Google Scholar 

  • Schwalbe, H., Carlomagno, T., Hennig, M., Junker, J., Reif, B., Richter, C. and Griesinger, C. (2001) Meth. Enzymol., 338, 35-81.

    Google Scholar 

  • Sitkoff, D. and Case, D.A. (1998) Prog. Nucl. Magn. Reson. Spectrosc., 32, 165-190.

    Google Scholar 

  • Sklenar, V., Peterson, R.D., Rejante, M.R. and Feigon, J. (1993) J. Biol. NMR, 3, 721-727.

    Google Scholar 

  • Wittebort, R.J. and Szabo, A. (1978) J. Chem. Phys., 69, 1722-1736.

    Google Scholar 

  • Yang, D., Gardner, K.H. and Kay, L.E. (1998) J. Biol. NMR, 11, 213-220.

    Google Scholar 

  • Yang, D., Konrat, R. and Kay, L.E. (1997) J. Am. Chem. Soc., 119, 11938-11940.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Bodenhausen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravindranathan, S., Kim, CH. & Bodenhausen, G. Cross correlations between 13C-1H dipolar interactions and 15N chemical shift anisotropy in nucleic acids. J Biomol NMR 27, 365–375 (2003). https://doi.org/10.1023/A:1025827017409

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025827017409

Navigation