Skip to main content
Log in

Cross-correlated relaxation rates between protein backbone H–X dipolar interactions

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The relaxation interference between dipole–dipole interactions of two separate spin pairs carries structural and dynamics information. In particular, when compared to individual dynamic behavior of those spin pairs, such cross-correlated relaxation (CCR) rates report on the correlation between the spin pairs. We have recently mapped out correlated motion along the backbone of the protein GB3, using CCR rates among and between consecutive HN–N and Hα–Cα dipole–dipole interactions. Here, we provide a detailed account of the measurement of the four types of CCR rates. All rates were obtained from at least two different pulse sequences, of which the yet unpublished ones are presented. Detailed comparisons between the different methods and corrections for unwanted pathways demonstrate that the averaged CCR rates are highly accurate and precise with errors of 1.5–3% of the entire value ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bonomi M, Camilloni C, Cavalli A, Vendruscolo M (2016) Metainference: a Bayesian inference method for heterogeneous systems. Sci Adv 2:e1501177

    Article  ADS  Google Scholar 

  • Bouvignies G, Bernado P, Meier S, Cho K, Grzesiek S, Brüschweiler R, Blackledge M (2005) Identification of slow correlated motions in proteins using residual dipolar and hydrogen-bond scalar couplings. Proc Natl Acad Sci USA 102:13885–13890

    Article  ADS  Google Scholar 

  • Bremi T, Brüschweiler R (1997) Locally anisotropic internal polypeptide backbone dynamics by NMR relaxation. J Am Chem Soc 119:6672–6673

    Article  Google Scholar 

  • Bremi T, Brüschweiler R, Ernst RR (1997) A protocol for the interpretation of side-chain dynamics based on NMR relaxation: application to phenylalanines in antamanide. J Am Chem Soc 119:4272–4284

    Article  Google Scholar 

  • Brüschweiler R, Ernst RR (1992) Molecular dynamics monitored by cross-correlated cross relaxation of spins quantized along orthogonal axes. J Chem Phys 96:1758–1766

    Article  ADS  Google Scholar 

  • Brutscher B, Skrynnikov NR, Bremi T, Brüschweiler R, Ernst RR (1998) Quantitative investigation of dipole-CSA cross-correlated relaxation by ZQ/DQ spectroscopy. J Magn Reson 130:346–351

    Article  ADS  Google Scholar 

  • Carlomagno T, Maurer M, Hennig M, Griesinger C (2000) Ubiquitin backbone motion studied via NHN–C′Cα dipolar–dipolar and C′–C′Cα/NHN CSA–dipolar cross-correlated relaxation. J Am Chem Soc 122:5105–5113

    Article  Google Scholar 

  • Carlomagno T, Bermel W, Griesinger C (2003) Measuring the χ1 torsion angle in protein by CH–CH cross-correlated relaxation: a new resolution-optimised experiment. J Biomol NMR 27:151–157

    Article  Google Scholar 

  • Case DA (1999) Calculation of nmr dipolar coupling strengths in modelpeptides. J Biomol NMR 15:95–102

    Article  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer AG, Rance M, Skleton NJ (2007) Protein NMR spectroscopy. Principles and pratice. Academic Press, San Diego

    Google Scholar 

  • Chiarparin E, Pelupessy P, Ghose R, Bodenhausen G (1999) Relaxation of two-spin coherence due to cross-correlated fluctuations of dipole-dipole couplings and anisotropic shifts in nmr of 15N,13C-labeled biomolecules. J Am Chem Soc 121:6876–6883

    Article  Google Scholar 

  • Chiarparin E, Pelupessy P, Ghose R, Bodenhausen G (2000) Relative orientation of CαHα-bond vectors of successive residues in proteins through cross-correlated relaxation in NMR. J Am Chem Soc 122:1758–1761

    Article  Google Scholar 

  • Clore GM, Schwieters CD (2006) Concordance of residual dipolar couplings, backbone order parameters and crystallographic B-factors for a small alpha/beta protein: a unified picture of high probability, fast atomic motions in proteins. J Mol Biol 355:879–886

    Article  Google Scholar 

  • Daragan VA, Mayo KH (1997) Motional model analyses of protein and peptide dynamics using 13C and 15N NMR relaxation. Prog Nucl Magn Reson Spectrosc 31:63–105

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax (1995) nmrPipe—a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Fenwick RB, Esteban-Martin S, Richter B, Lee D, Walter KFA, Milanovic D, Becker S, Lakomek NA, Griesinger C, Salvatella X (2011) Weak long-range correlated motions in a surface patch of ubiquitin involved in molecular recognition. J Am Chem Soc 133:10336–10339

    Article  Google Scholar 

  • Fenwick RB, Schwieters CD, Vögeli B (2016) Direct investigation of slow correlated dynamics in proteins via dipolar interactions. J Am Chem Soc 138:8412–8421

    Article  Google Scholar 

  • Früh D, Tolman JR, Bodenhausen G, Zwahlen C (2001) Cross-correlated chemical shift modulation: a signature of slow internal motions in proteins. J Am Chem Soc 123:4810–4816

    Article  Google Scholar 

  • Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141

    ADS  Google Scholar 

  • Goldman M (1984) Interference effects in the relaxation of a pair of unlike spin-1/2 nuclei. J Magn Reson 60:437–452

    ADS  Google Scholar 

  • Hall JB, Fushman D (2003) Characterization of the overall and local dynamics of a protein with intermediate rotational anisotropy: differentiating between conformational exchange and anisotropic diffusion in the B3 domain of protein G. J Biomol NMR 27:261–275

    Article  Google Scholar 

  • Hubbard PS (1958) Nuclear magnetic relaxation of three and four spin molecules in a liquid. Phys Rev 109:1153–1158

    Article  ADS  Google Scholar 

  • Johnson BA, Blevins RA (1994) NMR view: a computer program for the visualization and analysis of NMR data. J Biomol NMR 5:603–614

    Article  Google Scholar 

  • Kay LE (2005) NMR studies of protein structure and dynamics. J Magn Reson 173:193–207

    Article  ADS  Google Scholar 

  • Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665

    Article  Google Scholar 

  • Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta 1814:942–968

    Article  Google Scholar 

  • Kloiber K, Schuler W, Konrat R (2002) Automated NMR determination of protein backbone dihedral angles from cross-correlated spin relaxation. J Biomol NMR 22:349–363

    Article  Google Scholar 

  • Korzhnev DM, Billeter M, Arseniev AS, Orekhov VY (2001) Nmr studies of brownian tumbling and internal motions in proteins. Prog Nucl Magn Reson Spectrosc 38:197–266

    Article  Google Scholar 

  • Kumar A, Grace CRR, Madhu PK (2000) Cross-correlations in NMR. Prog Nucl Magn Reson Spectrosc 37:191–319

    Article  Google Scholar 

  • Lindorff-Larsen K, Best RB, DePristo MA, Dobson CM, Vendruscolo M (2005) Simultaneous determination of protein structure and dynamics. Nature 433:128–132

    Article  ADS  Google Scholar 

  • Lipari G, Szabo A (1982a) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules 1. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  Google Scholar 

  • Lipari G, Szabo A (1982b) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J Am Chem Soc 104:4559–4570

    Article  Google Scholar 

  • Lundström P, Mulder FAA, Akke M (2005) Correlated dynamics of consecutive residues reveal transient and cooperative unfolding of secondary structure in proteins. Proc Natl Acad Sci USA 102:16984–16989

    Article  ADS  Google Scholar 

  • Marion D, Ikura M, Tschudin R, Bax A (1989) Rapid recording of 2D nmr spectra without phase cycling. Application to study of hydrogen exchange in proteins. J Magn Reson 85:393–399

    ADS  Google Scholar 

  • Markwick PRL, Bouvignies G, Blackledge M (2007) Exploring multiple timescale motions in protein GB3 using accelerated molecular dynamics and nmr spectroscopy. J Am Chem Soc 129:4724–4730

    Article  Google Scholar 

  • McConnell HM (1956) Effect of anisotropic hyperfine interactions on paramagnetic relaxation in liquids. J Chem Phys 25:709–711

    Article  ADS  Google Scholar 

  • Mori M, Kateb F, Bodenhausen G, Piccioli M, Abergel D (2010) Toward structural dynamics: protein motions viewed by chemical shift modulations and direct detection of C′N multiple-quantum relaxation. J Am Chem Soc 132:3594–3600

    Article  Google Scholar 

  • Olsson S, Vögeli B, Cavalli A, Boomsma W, Ferkinghoff-Borg J, Lindorff-Larsen K, Hamelryck T (2014) Probabilistic determination of native state ensembles of proteins. J Chem Theory Comput 10:3484–3491

    Article  Google Scholar 

  • Palmer AG (2016) A dynamic look backward and forward. J Magn Reson 266:73–80

    Article  ADS  Google Scholar 

  • Pellecchia M, Pang Y, Wang L, Kurochkin AV, Kumar A, Zuiderweg ERP (1999) Quantitative measurement of cross-correlations between 15N and 13CO chemical shift anisotropy relaxation mechanisms by multiple quantum NMR. J Am Chem Soc 121:9165–9170

    Article  Google Scholar 

  • Pelupessy P, Chiarparin E, Ghose R, Bodenhausen G (1999a) Efficient determination of angles subtended by Cα–Hα and N–HN vectors in proteins via dipole-dipole cross-correlation. J Biomol NMR 13:375–380

    Article  Google Scholar 

  • Pelupessy P, Chiarparin E, Ghose R, Bodenhausen G (1999b) Simultaneous determination of Phi and Psi angles in proteins from measurements of cross-correlated relaxation effects. J Biomol NMR 14:277–280

  • Pelupessy P, Ravindranathan S, Bodenhausen G (2003) Correlated motions of successive amide N–H bonds in proteins. J Biomol NMR 25:265–280

    Article  Google Scholar 

  • Reif B, Hennig M, Griesinger C (1997) Direct measurement of angles between bond vectors in high-resolution NMR. Science 276:1230–1233

    Article  Google Scholar 

  • Reif B, Diener A, Hennig M, Maurer M, Griesinger C (2000) Cross-correlated relaxation for the measurement of angles between tensorial interactions. J Magn Reson 143:45–68

    Article  ADS  Google Scholar 

  • Schwalbe H, Carlomagno T, Hennig M, Junker J, Reif B, Richter C, Griesinger C (2001) Cross-correlated relaxation for measurement of angles between tensorial interactions. Methods Enzymol 338:35–81

    Article  Google Scholar 

  • Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broadband decoupling: WALTZ-16. J Magn Reson 52:335–338

    ADS  Google Scholar 

  • Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband application and low-level operation. J Magn Reson 64:547–552

    ADS  Google Scholar 

  • Shapiro YE (2013) NMR spectroscopy on domain dynamics in biomacromolecules. Prog Biophys Mol Biol 112:58–117

    Article  Google Scholar 

  • Skrynnikov NR, Konrat R, Muhandiram DR, Kay LE (2000) Relative orientation of peptide planes in proteins is reflected in carbonyl-carbonyl chemical shift anisotropy cross-correlated spin relaxation. J Am Chem Soc 122:7059–7071

    Article  Google Scholar 

  • Takahashi H, Shimada I (2007) Pairwise NMR experiments for the determination of protein backbone dihedral angle Phi based on cross-correlated spin relaxation. J Biomol NMR 37:179–185

    Article  Google Scholar 

  • Tjandra N, Feller SE, Pastor RW, Bax A (1995) Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. J Am Chem Soc 117:12562–12566

    Article  Google Scholar 

  • Tolman JR, Al-Hashimi HM, Kay LE, Prestegard JH (2001) Structural and dynamic analysis of residual dipolar coupling data for proteins. J Am Chem Soc 123:1416–1424

    Article  Google Scholar 

  • Torchia D (2015) NMR studies of dynamic biomolecular conformational ensembles. Prog Nucl Magn Reson Spectrosc 84–85:14–32

    Article  Google Scholar 

  • Ulmer TS, Ramirez BE, Delaglio F, Bax A (2003) Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy. J Am Chem Soc 125:9179–9191

    Article  Google Scholar 

  • Vammi V, Song G (2015) Ensembles of a small number of conformations with relative populations. J Biomol NMR 63:341–351

    Article  Google Scholar 

  • Vögeli B (2010) Comprehensive description of NMR cross-correlated relaxation under anisotropic molecular tumbling and correlated local dynamics on all time scales. J Chem Phys 133:014501

    Article  ADS  Google Scholar 

  • Vögeli B (2011) How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar Cα–C′/H N–N cross-correlated relaxation. J Biomol NMR 50:315–329

    Article  Google Scholar 

  • Vögeli B (2013) Full relaxation matrix analysis of apparent cross-correlated relaxation rates in four-spin systems. J Magn Reson 226:52–63

    Article  ADS  Google Scholar 

  • Vögeli B, Pervushin K (2002) Trosy experiment for refinement of backbone ψ and ϕ by simultaneous measurements of cross-correlated relaxation rates and 3,4JHaHN coupling constants. J Biomol NMR 24:291–300

    Article  Google Scholar 

  • Vögeli B, Riek R (2010) Side chain: backbone projections in aromatic and ASX residues from NMR cross-correlated relaxation. J Biomol NMR 46:135–147

    Article  Google Scholar 

  • Vögeli B, Yao LS (2009) Correlated dynamics between protein HN and HC bonds observed by NMR cross relaxation. J Am Chem Soc 131:3668–3678

    Article  Google Scholar 

  • Vögeli B, Ying JF, Grishaev A, Bax A (2007) Limits on variations in protein backbone dynamics from precise measurements of scalar couplings. J Am Chem Soc 129:9377–9385

    Article  Google Scholar 

  • Vögeli B, Yao L, Bax A (2008) Protein backbone motions viewed by intraresidue and sequential HN–Hα residual dipolar couplings. J Biomol NMR 41:17–28

    Article  Google Scholar 

  • Vögeli B, Friedmann M, Leitz D, Sobol A, Riek R (2010) Quantitative determination of NOE rates in perdeuterated and protonated proteins: practical and theoretical aspects. J Magn Reson 204:290–302

    Article  ADS  Google Scholar 

  • Vögeli B, Olsson S, Riek R, Güntert P (2015) Compiled data set of exact NOE distance limits, residual dipolar couplings and scalar couplings for the protein GB3. Data in Brief 50:99–106

    Article  Google Scholar 

  • Vögeli B, Olsson S, Güntert P, Riek R (2016) The exact NOE as an alternative in ensemble structure determination. Biophys J 110:113–126

    Article  Google Scholar 

  • Vugmeyster L, McKnight CJ (2008) Slow motions in chicken villin headpiece subdomain probed by cross-correlated NMR relaxation of amide NH bonds in successive residues. Biophys J 95:5941–5950

    Article  Google Scholar 

  • Vugmeyster L, McKnight CJ (2009) Phosphorylation-induced changes in backbone dynamics of the dematin headpiece C-terminal domain. J Biomol NMR 43:39–50

    Article  Google Scholar 

  • Vugmeyster L, Pelupessy P, Vugmeister BE, Abergel D, Bodenhausen G (2004) Cross-correlated relaxation in NMR of macromolecules in the presence of fast and slow internal dynamics. CR Physique 5: 377–386

    Article  ADS  Google Scholar 

  • Werbelow LG, Marshall AG (1973) Internal rotation and nonexponential methyl nuclear relaxation for macromolecules. J Magn Reson 11:299–313

    ADS  Google Scholar 

  • Yang DW, Kay LE (1998) Determination of the protein backbone dihedral angle ψ from a combination of NMR-derived cross-correlation spin relaxation rates. J Am Chem Soc 120:9880–9887

    Article  Google Scholar 

  • Yang D, Konrat R, Kay LE (1997) A sensitive pulse scheme for measuring the backbone dihedral angle ψ based on cross-correlation between 1Hα13Cα dipolar and 13C′ (carbonyl) chemical shift anisotropy relaxation interactions. J Am Chem Soc 119:11938–11940

    Article  Google Scholar 

  • Yao L, Vögeli B, Torchia DA, Bax A (2008a) Simultaneous NMR study of protein structure and dynamics using conservative mutagenesis. J Phys Chem B 112:6045–6056

    Article  Google Scholar 

  • Yao L, Vögeli B, Ying JF, Bax A (2008b) Nmr determination of amide N–H equilibrium bond length from concerted dipolar coupling measurements. J Am Chem Soc 130:16518–16520

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a start-up package at the University of Colorado Denver and the Swiss National Science Foundation with Grant 140214 to B.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat Vögeli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1176 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vögeli, B. Cross-correlated relaxation rates between protein backbone H–X dipolar interactions. J Biomol NMR 67, 211–232 (2017). https://doi.org/10.1007/s10858-017-0098-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-017-0098-5

Keywords

Navigation