Skip to main content

Advertisement

Log in

Preliminary Investigation into the Expression of Proton-Coupled Oligopeptide Transporters in Neural Retina and Retinal Pigment Epithelium (RPE): Lack of Functional Activity in RPE Plasma Membranes

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To determine the expression and functional activity of proton-coupled oligopeptide transporters (POT) in retinal pigment epithelial (RPE) cells.

Methods. RT-PCR was used to probe the presence of POT mRNA in freshly isolated bovine RPE (BRPE) and human RPE (HRPE) cells, a human RPE cell line (ARPE-19), and human and bovine neural retina. [14C]GlySar uptake was used to characterize POT activity in cultured ARPE-19 cells and freshly isolated BRPE cell sheet suspensions.

Results. PHT1 mRNA was expressed in BRPE, HRPE, ARPE-19, and bovine and human neural retina. In contrast, PEPT2 and PHT2 were expressed only in bovine and human retina, and PEPT1 could not be detected. GlySar exhibited a linear uptake over 6 h at pH values of 6.0 and 7.4, with greater uptake at pH 7.4 (p < 0.01). GlySar uptake did not exhibit saturability (5-2000 μM) and was unchanged when studied in the presence of 1 mM L-histidine. In contrast, GlySar uptake was significantly decreased when studied at 4°C or in the presence of endocytic inhibitors at 37°C (p < 0.01). Studies in BRPE cell sheet suspensions validated the results obtained in ARPE-19 cells and strongly suggested the absence of POT on the apical and basolateral membranes of RPE.

Conclusions. PHT1 mRNA is present in native bovine and human RPE and a human RPE cell line. However, the data argue against PHT1 being expressed on plasma membranes of RPE. Overall, GlySar appears to be taken up by RPE cells via a low-affinity, endocytic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Hughes, R. P. Gallenmore, and S. S. Miller. Transport mechanisms in the retinal pigment epithelium. In M. F. Marmor, T. J. Wolfenberger (eds.), The Retinal Pigment Epithelium Function and Disease, Oxford University Press, New York, 1998 pp. 103–135.

    Google Scholar 

  2. L. J. Rizzolo. Polarization of the Na+,K+–ATPase in epithelia derived from the neuroepithelium. Int. Rev. Cytol. 185:195–235 (1999).

    Google Scholar 

  3. R. Kannan, D. Tiang, J. Hu, and D. Bok. Glutathione transport in human retinal pigment epithelial (HRPE) cells: Apical localization of sodium–dependent GSH transport. Exp. Eye Res. 72:661–666 (2001).

    Google Scholar 

  4. C. D. Chancy, R. Kekuda, W. Huang, P. D. Prasad, J.–M. Kuhnel, F. M. Sirotnak, P. Roon, V. Ganapathy, and S. B. Smith. Expression and differential polarization of the reduced–folate transporter–1 and the folate receptor α in mammalian retinal pigment epithelium. J. Biol. Chem. 275:20676–20684 (2000).

    Google Scholar 

  5. J. V. Aukunuru, G. Sunkara, N. Bandi, W. B. Thoreson, and U. B. Kompella. Expression of multidrug resistance–associated protein (MRP) in human retinal pigment epithelial cells and its interaction with BAPSG, a novel aldose reductase inhibitor. Pharm. Res. 18:565–572 (2001).

    Google Scholar 

  6. P. D. Rajan, R. Kekuda, C. D. Chancy, W. Huang, V. Ganapathy, and S. B. Smith. Expression of the extraneuronal monoamine transporter in RPE and neural retina. Curr. Eye Res. 20:195–204 (2000).

    Google Scholar 

  7. Y.–J. Fei, Y. Kanai, S. Nussberger, V. Ganapathy, F. H. Leibach, M. F. Romero, S. K. Singh, W. F. Boron, and M. A. Hediger. Expression cloning of a mammalian proton–coupled oligopeptide transporter. Nature 368:563–566 (1994).

    Google Scholar 

  8. F. H. Leibach and V. Ganapathy. Peptide transporters in the intestine and the kidney. Annu. Rev. Nutr. 16:99–119 (1996).

    Google Scholar 

  9. H. Daniel. Function and molecular structure of brush border membrane peptide/H+ symporters. J. Membr. Biol. 154:197–203 (1996).

    Google Scholar 

  10. H. Shen, D. E. Smith, T. Yang, Y. G. Huang, J. B. Schnermann, and F. C. Brosius III. Localization of PEPT1 and PEPT2 proton–coupled oligopeptide transporter mRNA and protein in rat kidney. Am. J. Physiol. 276:F658–F665 (1999).

    Google Scholar 

  11. W. Liu, R. Liang, S. Ramamoorthy, Y.–J. Fei, M. E. Ganapathy, M. A. Hediger, V. Ganapathy, and F. H. Leibach. Molecular cloning of PEPT 2, a new member of the H+/peptide cotransporter family, from human kidney. Biochim. Biophys. Acta 1235:461–466 (1995).

    Google Scholar 

  12. H. Daniel and M. Herget. Cellular and molecular mechanisms of renal peptide transport. Am. J. Physiol. 273:F1–F8 (1997).

    Google Scholar 

  13. U. V. Berger and M. A. Hediger. Distribution of peptide transporter PEPT2 mRNA in the rat nervous system. Anat. Embryol. 199:439–449 (1999).

    Google Scholar 

  14. A. Novotny, J. Xiang, W. Stummer, N. S. Teuscher, D. E. Smith, and R. F. Keep. Mechanisms of 5–aminolevulinic acid uptake at the choroid plexus. J. Neurochem. 75:321–328 (2000).

    Google Scholar 

  15. C. Shu, H. Shen, N. S. Teuscher, P. J. Lorenzi, R. F. Keep, and D. E. Smith. Role of PEPT2 in peptide/mimetic trafficking at the blood–cerebrospinal fluid barrier: Studies in rat choroid plexus epithelial cells in primary culture. J. Pharmacol. Exp. Ther. 301:820–829 (2002).

    Google Scholar 

  16. N. S. Teuscher, A. Novotny, R. F. Keep, and D. E. Smith. Functional evidence for the presence of PEPT2 in rat choroid plexus: Studies with glycylsarcosine. J. Pharmacol. Exp. Ther. 294:494–499 (2000).

    Google Scholar 

  17. N. S. Teuscher, R. F. Keep, and D. E. Smith. PEPT2–mediated uptake of neuropeptides in rat choroid plexus. Pharm. Res. 18:807–813 (2001).

    Google Scholar 

  18. T. Yamashita, S. Shimada, W. Guo, K. Sato, E. Kohmura, T. Hayakawa, T. Takagi, and M. Tohyama. Cloning and functional expression of a brain peptide/histidine transporter. J. Biol. Chem. 272:10205–10211 (1997).

    Google Scholar 

  19. K. Sakata, T. Yamashita, M. Maeda, Y. Moriyama, S. Shimada, and M. Tohyama. Cloning of a lymphatic peptide/histidine transporter. J. Biochem. 356:53–60 (2001).

    Google Scholar 

  20. L. C. Kreutz and M. R. Ackermann. Porcine reproductive and respiratory syndrome virus enters cells through a low pH–dependent endocytic pathway. Virus Res. 42:137–147 (1996).

    Google Scholar 

  21. M.–C. Lee, C. M. Cahill, J.–P. Vincent, and A. Beaudet. Internalization and trafficking of opioid receptor ligands in rat cortical neurons. Synapse 43:102–111 (2002).

    Google Scholar 

  22. M. Buraczynska, A. J. Mears, S. Zareparsi, R. Farjo, E. Filippova, Y. Yuan, S. P. MacNee, B. Hughes, and A. Swaroop. Gene expression profile of native human retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 43:603–607 (2002).

    Google Scholar 

  23. M. M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72:248–254 (1976).

    Google Scholar 

  24. J. Hu and D. Bok. A cell culture medium that supports the differentiation of human retinal pigment epithelium into functionally polarized monolayers. Mol. Vis. 7:14–19 (2000).

    Google Scholar 

  25. C. Shu, H. Shen, U. Hopfer, and D. E. Smith. Mechanism of intestinal absorption and renal reabsorption of an orally active ACE inhibitor: Uptake and transport of fosinopril in cell cultures. Drug Metab. Dispos. 29:1307–1315 (2001).

    Google Scholar 

  26. M. Sugawara, W. Huang, Y.–J. Fei, F. H. Leibach, V. Ganapathy, and M. E. Ganapathy. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. J. Pharm. Sci. 89:781–789 (2000).

    Google Scholar 

  27. C. W. Botka, T. W. Wittig, R. C. Graul, C. U. Nielsen, and W. Sadée. Human proton/oligopeptide transporter (POT) genes: Identification of putative human genes using bioinformatics. AAPS PharmSci 2(2): article 16(2000) (http://www.pharmsci.org).

    Google Scholar 

  28. H. Saito, H. Motohashi, M. Mukai, and K.–I. Inui. Cloning and characterization of a pH–sensing regulatory factor that modulates transport activity of the human H+/peptide cotransporter, PEPT1. Biochem. Biophys. Res. Commun. 237:577–582 (1997).

    Google Scholar 

  29. S. D. Freedman, H. F. Kern, and G. A. Scheele. Acinar lumen pH regulates endocytosis, but not exocytosis, at the apical plasma membrane of pancreatic acinar cells. Eur. J. Cell Biol. 75:153–162 (1998).

    Google Scholar 

  30. K.–D. Lee, S. Nir, and D. Papahadjopoulos. Quantitative analysis of liposome–cell interactions in vitro: Rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes. Biochemistry 32:889–899 (1993).

    Google Scholar 

  31. K. C. Dunn, A. D. Marstein, V. L. Bonilha, E. Rodriguez–Boulan, F. Giordano, and L. M. Hjelmeland. Use of the ARPE–19 cell line as a model of RPE polarity: Basolateral secretion of FGF5. Invest. Ophthalmol. Vis. Sci. 39:2744–2749 (1998).

    Google Scholar 

  32. G. M. Holtkamp, M. van Rossem, A. F. de Vos, B. Willekens, R. Peek, and A. Kijlstra. Polarized secretion of IL–6 and IL–8 by human retinal pigment epithelial cells. Clin. Exp. Immunol. 112:34–43 (1998).

    Google Scholar 

  33. M. Thamotharan, Y. B. Lombardo, S. Z. Bawani, and S. A. Adibi. An active mechanism for completion of the final stage of protein degradation in the liver, lysosomal transport of dipeptides. J. Biol. Chem. 272:11786–11790 (1997).

    Google Scholar 

  34. X. Zhou, M. Thamotharan, A. Gangopadhyay, C. Serdikoff, and S. A. Adibi. Characterization of an oligopeptide transporter in renal lysosomes. Biochim. Biophys. Acta 1466:372–378 (2000).

    Google Scholar 

  35. M. Boulton and P. Dayhaw–Barker. The role of the retinal pigment epithelium: Topographical variation and ageing changes. Eye 15(Pt 3):384–389 (2001).

    Google Scholar 

  36. R. W. Young and D. Bok. Participation of the retinal pigment epithelium in the rod outer segment renewal process. J. Cell Biol. 42:392–402 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ocheltree, S.M., Keep, R.F., Shen, H. et al. Preliminary Investigation into the Expression of Proton-Coupled Oligopeptide Transporters in Neural Retina and Retinal Pigment Epithelium (RPE): Lack of Functional Activity in RPE Plasma Membranes. Pharm Res 20, 1364–1372 (2003). https://doi.org/10.1023/A:1025741723724

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025741723724

Navigation