Skip to main content
Log in

Expression of anoctamins in retinal pigment epithelium (RPE)

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The anoctamin (ANO, TMEM16) family of Ca2+-activated Cl channels consists of ten members with different cellular functions (ANO1–10). ANO1 is a Ca2+-activated Cl channel in secretory epithelial cells of exocrine pancreas, salivary glands, or enterocytes. Expression of ANO1 also promotes cell proliferation and migration of tumor cells. ANO6 is essential for Ca2+-dependent scrambling of membrane phospholipids in platelets, red blood cells, and lymphocytes. ANO10 modulates Ca2+ signals in macrophages and has a role in cerebellar ataxia and other neurological disorders. All three anoctamins have been proposed to control intracellular Ca2+ signals. Anoctamins may also form the basolateral Ca2+-activated Cl channel in the retinal pigment epithelium (RPE). We show that native human, bovine, porcine, and mouse RPEs express ANO1, ANO6, and ANO10. Growth arrested and confluent RPR cells expressed ANO1 in the plasma membrane, whereas ANO6 and ANO10 were found in the primary cilium. Ussing chamber experiments showed that the application of ATP to the apical (retinal) side of porcine RPE induced a Ca2+-activated Cl secretion. Activation was inhibited by basolateral (choroidal) administration of the ANO inhibitors AO1, niflumic acid (NFA), and 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS). The results suggest that ANO1 is responsible for basolateral Ca2+-dependent Cl secretion in RPE, whereas ANO6 and ANO10 may have different functions, such as modulating Ca2+ signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adorante JS, Miller SS (1990) Potassium-dependent volume regulation in retinal pigment epithelium is mediated by Na, K, Cl cotransport. J Gen Physiol 96:1153–1176

    Article  CAS  PubMed  Google Scholar 

  2. Balreira A, Boczonadi V, Barca PA, Bansagi B, Appleton M, Graham C, Hargreaves IP, Rasic VM, Lochmuller H, Griffin H, Taylor RW, Naini A, Chinnery PF, Hirano M, Quinzii CM, Horvath R (2014) ANO10 mutations cause ataxia and coenzyme Q (10) deficiency. J Neurol 261:2192–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blaug S, Quinn R, Quon J, Jalickee S, Miller SS (2003) Retinal pigment epithelial function: a role for CFTR? Doc Ophthalmol 106:43–50

    Article  PubMed  Google Scholar 

  4. Bosl MR, Stein V, Hubner C, Zdebik AA, Jordt SE, Mukhopadhyay AK, Davidoff MS, Holstein AF, Jentsch TJ (2001) Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl channel disruption. EMBO J 20:1289–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594

    Article  CAS  PubMed  Google Scholar 

  6. Chamard L, Sylvestr G, Koenig M, Magnin E (2016) Executive and attentional disorders, epilepsy and porencephalic cyst in autosomal recessive cerebellar ataxia type 3 due to ANO10 mutation. Eur Neurol 75:186–190

    Article  CAS  PubMed  Google Scholar 

  7. Dauner K, Mobus C, Frings S, Mohrlen F (2013) Targeted expression of anoctamin calcium-activated chloride channels in rod photoreceptor terminals of the rodent retina. Invest Ophthalmol Vis Sci 54:3126–3136

    Article  PubMed  Google Scholar 

  8. Duvvuri U, Shiwarski DJ, Xiao D, Bertrand C, Huang X, Edinger RS, Rock JR, Harfe BD, Henson BJ, Kunzelmann K, Schreiber R, Seethala RS, Egloff AM, Chen X, Lui VW, Grandis JR, Gollin SM (2012) TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression. Cancer Res 72:3270–3281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Faria D, Rock JR, Romao AM, Schweda F, Bandulik S, Witzgall R, Schlatter E, Heitzmann D, Pavenstadt H, Herrmann E, Kunzelmann K, Schreiber R (2014) The calcium-activated chloride channel anoctamin 1 contributes to the regulation of renal function. Kidney Int 85:1369–1381

    Article  CAS  PubMed  Google Scholar 

  10. Forschbach V, Goppelt-Struebe M, Kunzelmann K, Schreiber R, Piedagnel R, Kraus A, Eckardt KU, Buchholz B (2015) Anoctamin 6 is localized in the primary cilium of renal tubular cells and is involved in apoptosis-dependent cyst lumen formation. Cell Death Dis 6:e1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fujii S, Gallemore RP, Hughes BA, Steinberg RH (1992) Direct evidence for a basolateral membrane Cl- conductance in toad retinal pigment epithelium. Am J Phys 262:C374–C383

    CAS  Google Scholar 

  12. Gomez NM, Tamm ER, Strauss O (2013) Role of bestrophin-1 in store-operated calcium entry in retinal pigment epithelium. Pflugers Arch 465:481–495

    Article  CAS  PubMed  Google Scholar 

  13. Grierson I, Hiscott P, Hogg P, Robey H, Mazure A, Larkin G (1994) Development, repair and regeneration of the retinal pigment epithelium. Eye 8:255–262

    Article  PubMed  Google Scholar 

  14. Hammer C, Wanitchakool P, Sirianant L, Papiol S, Monnheimer M, Faria D, Ousingsawat J, Schramek N, Schmitt C, Margos G, Michel A, Kraiczy P, Pawlita M, Schreiber R, Schulz TF, Fingerle V, Tumani H, Ehrenreich H, Kunzelmann K (2015) A coding variant of ANO10, affecting volume regulation of macrophages, is associated with Borrelia seropositivity. Mol Med 21:26–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hartzell HC, Qu Z, Yu K, Xiao Q, Chien LT (2008) Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev 88:639–672

    Article  CAS  PubMed  Google Scholar 

  16. Kunzelmann K (2015) TMEM16, LRRC8A, bestrophin: chloride channels controlled by Ca and cell volume. Trends Biochem Sci 40:535–543

    Article  CAS  PubMed  Google Scholar 

  17. Kunzelmann K, Cabrita I, Wanitchakool P, Ousingsawat J, Sirianant L, Benedetto R, Schreiber R (2015) Modulating Ca signals: a common theme for TMEM16, Ist2, and TMC. Pflugers Arch 468:475–490

    Article  PubMed  Google Scholar 

  18. Kunzelmann K, Kongsuphol P, Aldehni F, Tian Y, Ousingsawat J, Warth R, Schreiber R (2009) Bestrophin and TMEM16—Ca2+ activated Cl channels with different functions. Cell Calcium 46:233–241

    Article  CAS  PubMed  Google Scholar 

  19. Kunzelmann K, Kongsuphol P, Chootip K, Toledo C, Martins JR, Almaca J, Tian Y, Witzgall R, Ousingsawat J, Schreiber R (2011) Role of the Ca2+-activated Cl channels bestrophin and anoctamin in epithelial cells. Biol Chem 392:125–134

    Article  CAS  PubMed  Google Scholar 

  20. Kunzelmann K, Schreiber R (2014) Chloride secretion, anoctamin 1 and Ca2+ signaling. Channels 8:387–388

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kunzelmann K, Schreiber R, Kmit A, Jantarajit W, Martins JR, Faria D, Kongsuphol P, Ousingsawat J, Tian Y (2012) Expression and function of epithelial anoctamins. Exp Physiol 97:184–192

    Article  CAS  PubMed  Google Scholar 

  22. Kunzelmann K, Tian Y, Martins JR, Faria D, Kongsuphol P, Ousingsawat J, Thevenod F, Roussa E, Rock J, Schreiber R (2011) Anoctamins. Pflugers Arch 462:195–208

    Article  CAS  PubMed  Google Scholar 

  23. Lee S, Yoon BE, Berglund K, Oh SJ, Park H, Shin HS, Augustine GJ, Lee CJ (2010) Channel-mediated tonic GABA release from glia. Science 330:790–796

    Article  CAS  PubMed  Google Scholar 

  24. Liu G, Liu G, Chen H, Borst O, Gawaz M, Vortkamp A, Schreiber R, Kunzelmann K, Lang F (2015) Involvement of Ca2+ activated Cl channel Ano6 in platelet activation and apoptosis. Cell Physiol Biochem 37:1934–1944

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Zhang H, Huang D, Qi J, Xu J, Gao H, Du X, Gamper N, Zhang H (2015) Characterization of the effects of Cl channel modulators on TMEM16A and bestrophin-1 Ca2+ activated Cl channels. Pflugers Arch 467:1417–1430

    Article  CAS  PubMed  Google Scholar 

  26. Marmorstein LY, Wu J, McLaughlin P, Yocom J, Karl MO, Neussert R, Wimmers S, Stanton JB, Gregg RG, Strauss O, Peachey NS, Marmorstein AD (2006) The light peak of the electroretinogram is dependent on voltage-gated calcium channels and antagonized by bestrophin (best-1). J Gen Physiol 127:577–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marquardt A, Stohr H, Passmore LA, Kramer F, Rivera A, Weber BH (1998) Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum Mol Genet 7:1517–1525

    Article  CAS  PubMed  Google Scholar 

  28. Martins JR, Faria D, Kongsuphol P, Reisch B, Schreiber R, Kunzelmann K (2011) Anoctamin 6 is an essential component of the outwardly rectifying chloride channel. Proc Natl Acad Sci U S A 108:18168–18172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mattheij NJ, Braun A, van Kruchten R, Castoldi E, Pircher J, Baaten CC, Wulling M, Kuijpers MJ, Kohler R, Poole AW, Schreiber R, Vortkamp A, Collins PW, Nieswandt B, Kunzelmann K, Cosemans JM, Heemskerk JW (2015) Survival protein anoctamin-6 controls multiple platelet responses including phospholipid scrambling, swelling, and protein cleavage. FASEB J 30:727–737

    Article  PubMed  Google Scholar 

  30. Milenkovic A, Brandl C, Milenkovic VM, Jendryke T, Sirianant L, Wanitchakool P, Zimmermann S, Reiff CM, Horling F, Schrewe H, Schreiber R, Kunzelmann K, Wetzel CH, Weber BH (2015) Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells. Proc Natl Acad Sci U S A 112:E2630–E2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nials AT, Uddin S (2008) Mouse models of allergic asthma: acute and chronic allergen challenge. Dis Model Mech 1:213–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nishiyama K, Sakaguchi H, Hu JG, Bok D, Hollyfield JG (2002) Claudin localization in cilia of the retinal pigment epithelium. Anat Rec 267:196–203

    Article  CAS  PubMed  Google Scholar 

  33. Ousingsawat J, Martins JR, Schreiber R, Rock JR, Harfe BD, Kunzelmann K (2009) Loss of TMEM16A causes a defect in epithelial Ca2+ dependent chloride transport. J Biol Chem 284:28698–28703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peterson WM, Meggyesy C, Yu K, Miller SS (1997) Extracellular ATP activates calcium signaling, ion, and fluid transport in retinal pigment epithelium. J Neurosci 17:2324–2337

    CAS  PubMed  Google Scholar 

  35. Reigada D, Lu W, Mitchell CH (2006) Glutamate acts at NMDA receptors on fresh bovine and on cultured human retinal pigment epithelial cells to trigger release of ATP. J Physiol 575:707–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruiz C, Martins JR, Rudin F, Schneider S, Dietsche T, Fischer CA, Tornillo L, Terracciano LM, Schreiber R, Bubendorf L, Kunzelmann K (2012) Enhanced expression of ANO1 in head and neck squamous cell carcinoma causes cell migration and correlates with poor prognosis. PLoS One 7:e43265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schreiber R, Faria D, Skryabin BV, Wanitchakool P, Rock JR, Kunzelmann K (2014) Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine. Pflugers Arch 467:1203–1213

    Article  PubMed  Google Scholar 

  38. Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Strauss O (1995) The retinal pigment epithelium. In: Kolb H, Fernandez E, Nelson R (eds) Source Webvision: The Organization of the Retina and Visual System [Internet]. University of Utah Health Sciences Center, Salt Lake City (UT)

    Google Scholar 

  40. Stumm CL, Halcsik E, Landgraf RG, Camara NO, Sogayar MC, Jancar S (2014) Lung remodeling in a mouse model of asthma involves a balance between TGF-beta1 and BMP-7. PLoS One 9:e95959

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sun H, Tsunenari T, Yau KW, Nathans J (2001) The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci U S A 99:4008–4013

    Article  Google Scholar 

  42. Vermeer S, Hoischen A, Meijer RP, Gilissen C, Neveling K, Wieskamp N, de Brouwer A, Koenig M, Anheim M, Assoum M, Drouot N, Todorovic S, Milic-Rasic V, Lochmuller H, Stevanin G, Goizet C, David A, Durr A, Brice A, Kremer B, van de Warrenburg BP, Schijvenaars MM, Heister A, Kwint M, Arts P, van der Wijst J, Veltman J, Kamsteeg EJ, Scheffer H, Knoers N (2010) Targeted next-generation sequencing of a 12.5 Mb homozygous region reveals ANO10 mutations in patients with autosomal-recessive cerebellar ataxia. Am J Hum Genet 87:813–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weng TX, Godley BF, Jin GF, Mangini NJ, Kennedy BG, Yu AS, Wills NK (2002) Oxidant and antioxidant modulation of chloride channels expressed in human retinal pigment epithelium. Am J Physiol Cell Physiol 283:C839–C849

    Article  CAS  PubMed  Google Scholar 

  44. Wolf W, Kilic A, Schrul B, Lorenz H, Schwappach B, Seedorf M (2012) Yeast 1st 2 recruits the endoplasmic reticulum to the plasma membrane and creates a ribosome-free membrane microcompartment. PLoS One 7:e39703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Regensburg (Anschubförderung), as well as by the DFG SFB699 A7/A12. We thank Brigitte Wild and Patricia Seeberger for excellent technical support. We thank Andrea Milenkovic and Prof. Bernhard Weber (Institute of Human Genetics, University of Regensburg, Germany) for supplying RPE cDNA and real-time PCR of ANO in mouse RPE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Schreiber.

Electronic supplementary material

Fig. S1

(PDF 5844 kb)

Table S1

(PDF 87 kb)

Table S2

(PDF 87 kb)

Table S3

(PDF 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schreiber, R., Kunzelmann, K. Expression of anoctamins in retinal pigment epithelium (RPE). Pflugers Arch - Eur J Physiol 468, 1921–1929 (2016). https://doi.org/10.1007/s00424-016-1898-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1898-2

Keywords

Navigation