Skip to main content
Log in

TNT Biotransformation and Detoxification by a Pseudomonas Aeruginosa Strain

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Successful microbial-mediated remediation requires transformationpathways that maximize metabolism and minimize the accumulation of toxic products. Pseudomonas aeruginosa strain MX, isolated from munitions-contaminated soil, degraded 100 mg TNT L-1 in culture medium within 10 h under aerobic conditions. The major TNT products were 2-amino-4,6-dinitrotoluene (2ADNT, primarily in the supernatant) and 2,2'-azoxytoluene (2,2'AZT, primarily in the cell fraction), which accumulated as major products via the intermediate2-hydroxylamino-4,6-dinitrotoluene (2HADNT). The 2HADNT and2,2'AZT were relatively less toxic to the strain than TNT and 2ADNT. Aminodinitrotoluene (ADNT) production increased when yeast extract was added to the medium. While TNT transformation rate was not affected by pH, more HADNTs accumulated at pH 5.0 than at pH 8.0 and AZTs did not accumulate at the lower pH. The appearance of 2,6-diamino-4-nitrotoluene (2,6DANT) and 2,4-diamino-6-nitrotoluene (2,4DANT); dinitrotoluene (DNT) and nitrotoluene (NT); and 3,5-dinitroaniline (3,5DNA) indicated various routes of TNT metabolism and detoxification by P. aeruginosa strain MX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achtnich C, Pfortner P, Weller MG, Niessner R, Lenke H & Knackmuss H-J (1999) Reductive transformation of bound trinitrophenyl residues and free TNT during a bioremediation process analyzed by immunoassay. Environ. Sci. Technol. 33: 3421–3426

    Google Scholar 

  • Alef K & Nannipieri P (1995) Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London

    Google Scholar 

  • Alvarez MA, Kitts CL, Botsford JL & Unkefer PJ (1995) Pseudomonas aeruginosa strain MA01 aerobically metabolized the aminodinitrotoluenes produced by 2,4,6-trinitrotoluene nitro group reduction. Can. J. Microbiol. 41: 984–991

    Google Scholar 

  • Bennett JW (1994) Prospects for fungal bioremediation of TNT munition waster. Intern. Biodeter. Biodeg. 34: 21–34

    Google Scholar 

  • Boopathy R, Kulpa CF & Wilson M (1993) Metabolism of TNT by Desulfovibrio sp. B strain. Appl. Microbiol. Biotechnol. 39: 270–275

    Google Scholar 

  • Boopathy R, Manning J, Montemagno C & Kulpa C (1994) Metabolism of 2,4,6-trinitrotoluene by a Pseudomonas consortium under aerobic conditions. Curr. Microbiol. 28: 131–137

    Google Scholar 

  • Bradley PM, Chapelle FH & Landmeyer JE (1995) Degradation of 2,4-DNT, 2,6-DNT, and 2,4,6-TNT by indigenous aquifer microorganisms. In: Hinchee RE (Ed) Bioremediation of Recalcitrant Organics (pp 267–271). Battelle Press, Columbus, OH

    Google Scholar 

  • Bradley PM, Chapelle FH, Landmeyer JE & Schumacher JG (1994) Microbial transformation of nitroaromatics in surface soils and aquifer materials. Appl. Environ. Microbiol. 60: 2170–2175

    Google Scholar 

  • Bumpus JA & Tatarko M (1994) Biodegradation of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium: Identification of initial degradation products and the discovery of a TNT metabolite that inhibits lignin peroxidases. Curr. Microbiol. 28: 185–190

    Google Scholar 

  • Carpenter DF, McCormick NG, Cornell JH & Kaplan AM (1978) Microbial transformation of 14C-labeled 2,4,6-trinitrotoluene in an activated-sludge system. Appl. Environ. Microbiol. 35: 949–954

    Google Scholar 

  • Cartwright NJ & Cain RR (1959) Bacterial degradation of the nitrobenzoic acids. Biochem. J. 71: 248–261

    Google Scholar 

  • Channon HJ, Mills GT & Williams RT (1944) The metabolism of 2:4:6-trinitrotoluene (-T.N.T.). Biochem. J. 38: 70–85

    Google Scholar 

  • Clesceri LS, Greenberg AE & Trussell RR (1989) Standard methods for the examination of water and wastewater (pp 4–129). Am. Public. Health Assoc., Washington, DC

    Google Scholar 

  • Collie SL, Donnelly KC, Bae B-H, Autenrieth RL & Bonner JS (1995) Degradation of 2,4,6-trinitrotoluene (TNT) in an aerobic reactor. Chemosphere 31: 3025–3032

    Google Scholar 

  • Daniel BP, Korus RA & Crawford DL (1995) Anaerobic bioremediation of munitions-contaminated soil. In: Schepart BS (Ed) Bioremediation of Pollutants in Soil and Water (pp 161–175). American Society for Testing and Materials, Philadelphia, PA

    Google Scholar 

  • Daun G, Lenke H, Reuss M & Knackmuss H-J (1998) Biological treatment of TNT-contaminated soil. 1. Anaerobic cometabolic reduction and interaction of TNT and metabolites with soil components. Environ. Sci. Technol. 32: 1956–1963

    Google Scholar 

  • Drzyzga O, Bruns-Nagel D, Gorontzy T, Blotevogel K-H, Gemsa D & von Low E (1998) Mass balance studies with 14C-labeled 2,4,6-trinitrotoluene (TNT) mediated by an anaerobic Desulfovibrio species and an aerobic Serratia species. Curr. Microbiol. 37: 380–386

    Google Scholar 

  • Duque E, Haidour A, Godoy F & Ramos JL (1993) Construction of a Pseudomonas hybrid strain that mineralises 2,4,6-trinitrotoluene. J. Bateriol. 175: 2278–2283

    Google Scholar 

  • Ederer MM, Lewis TA & Crawford RL (1997) 2,4,6-Trinitrotoluene (TNT) transformation by clostridia isolated from a munitionfed bioreactor: comparison with non-adapted bacteria. J. Ind. Microbiol. Biotechnol. 18: 82–88

    Google Scholar 

  • Esteve-NÚñez A, Caballero A & Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol. Mol. Biol. Rev. 65: 335–352

    Google Scholar 

  • Esteve-NÚñez A & Ramos JL (1998) Metabolism of 2,4,6-trinitrotoluene by Pseudomonas sp. JLR11. Environ. Sci. Technol. 32: 3802–3808

    Google Scholar 

  • Fiorella PD & Spain JC (1997) Transformation of 2,4,6-trinitrotoluene by Pseudomonas pseudoalcaligenes JS52. Appl. Environ. Microbiol. 63: 2007–2015

    Google Scholar 

  • Funk SB, Roberts DJ, Crawford DL & Crawford RL (1993) Initial-phase optimization for bioremediation of munition compoundcontaminated soils. Appl. Environ. Microbiol. 59: 2171–2177

    Google Scholar 

  • Haidour A & Ramos JL (1996) Identification of products resulting from the biological reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene by Pseudomonas sp. Environ. Sci. Technol. 30: 2365–2370

    Google Scholar 

  • Hankenson K & Schaeffer DJ (1991) Microtox assay of trinitrotoluene, diaminonitrotoluene, and dinitromethylaniline mixtures. Bull. Environ. Contam. Toxicol. 46: 550–553

    Google Scholar 

  • Hughes JB, Wang C, Yesland K, Richardson A, Bhadra R, Bennett G & Rudolph F (1998) Bamberger rearrangement during TNT metabolism by Clostridium acetobutylicum. Environ. Sci. Technol. 32: 494–500

    Google Scholar 

  • Kalafut T, Wales ME, Rastogi VK, Naumova RP, Zaripova SK & Wild JR (1998) Biotransformation patterns of 2,4,6-trinitrotoluene by aerobic bacteria. Curr. Microbiol. 36: 45–54

    Google Scholar 

  • Kaplan DL & Kaplan AM (1982) Thermophilic biotransformations of 2,4,6-trinitrotoluene under simulated composting conditions. Appl. Environ. Microbiol. 44: 757–760

    Google Scholar 

  • Khan TA, Bhadra R & Hughes J (1997) Anaerobic transformation of 2,4,6-TNT and related nitroaromatic compounds by Clostridium acetobutylicum. J. Ind. Microbiol. 18: 198–203

    Google Scholar 

  • Kim H-Y & Song H-G (2000) Comparison of 2,4,6-trinitrotoluene degradation by seven strains of white rot fungi. Curr. Microbiol. 41: 317–320

    Google Scholar 

  • Klausmeier RE, Osmon JL & Walls DR (1973) The effect of trinitrotoluene on microorganisms. Dev. Ind. Microbiol. 15: 309–317

    Google Scholar 

  • Martin JL, Comfort SD, Shea PJ, Kokjohn TA & Drijber RA (1997) Denitration of 2,4,6-trinitrotoluene by Pseudomonas savastanoi. Can. J. Microbiol. 43: 447–455

    Google Scholar 

  • McCormick NG, Feeherry FE & Levinson HS (1976) Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol. 31: 949–958

    Google Scholar 

  • Nishino SF & Spain JC (1997) Biodegradation and transformation of nitroaromatic compounds. In: Hurst CJ (Ed) Manual of Environmental Microbiology (pp 776–783). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Osmon JC & Klausmeier RE (1972) The microbial degradation of explosives. Dev. Ind. Microbiol. 14: 247–252

    Google Scholar 

  • Palazzo AJ & Leggett DC (1986) Effect and disposition of TNT in a terrestrial plant. J. Environ. Qual. 15: 49–52

    Google Scholar 

  • Rieger PG & Knackmuss H-J (1995) Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related mitroaromatic compounds in contaminated soil. In: Spain JC (Ed) Biodegradation of Nitroaromatic Compounds (pp 1–18). Plenum Press, New York

    Google Scholar 

  • Schackmann A & Mueller R (1991) Reduction of nitroaromatic compounds by different Pseudomonas species under aerobic conditions. Appl. Microbiol. Biotechnol. 34: 809–813

    Google Scholar 

  • Shimojo T, Hiroe M, Ishiyama S, Ito H, Nishikawa T & Marumo F (1999) Nitric oxide induces apoptotic death of cardiomyocytes via a cyclic-GMP-dependent pathway. Exp. Cell Res. 247: 38–47

    Google Scholar 

  • Shneyvays V, Nawrath H, Jacobson KA & Shainberg A (1998) Induction of apoptosis in cardiac myocytes by an A3 adenosine receptor agonist. Exp. Cell Res. 243: 383–397

    Google Scholar 

  • Simpson JR & Evans WC (1953) The metabolism of nitrophenols by certain bacteria. Biochem. J. 55: 24

    Google Scholar 

  • Smock LA, Stoneburner DL & Clark JR (1976) The toxic effects of TNT and its primary degradation products on two species of algae and the fathead minnow. Water Res. 10: 537–543

    Google Scholar 

  • Talmage SS, Opresko DM, Maxwell CJ, Welsh CJ, Cretella FM, Reno PH & Daniel FB (1999) Nitroaromatic munition compounds: Environmental effects and screening values. In: Ware GW (Ed) Reviews of Environmental Contamination and Toxicology (pp 65–80). Springer, New York

    Google Scholar 

  • Vasilyeva GK, Oh B-T, Shea PJ, Drijber RA, Kreslavski VD, Minard B & Bollag J-M (2000) Aerobic TNT reduction via 2-hydroxylamino-4,6-dinitrotoluene by Pseudomonas aeruginosa strain MX isolated from munitions-contaminated soil. Bioremed. J. 4: 111–124

    Google Scholar 

  • Wang C-J, Thiele S & Bollag J-M (2002) Interaction of 2,4,6-trinitrotoluene (TNT) and 4-amino-2,6-dinitrotoluene with humic monomers in the presence of oxidative enzymes. Arch. Environ. Contam. Toxicol. 42: 1–8

    Google Scholar 

  • Won WD, Disalvo LH & Ng J (1976) Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites. Appl. Environ. Microbiol. 31: 576–580

    Google Scholar 

  • Won WD, Heckly RJ, Glover DJ & Hoffsommer JC (1974) Metabolic disposition of 2,4,6-trinitrotoluene. Appl. Environ. Microbiol. 27: 513–516

    Google Scholar 

  • Yinon J (1990) Toxicity and Metabolism of Explosives. CRC Press Inc., Boca Raton, FL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Taek Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, BT., Shea, P.J., Drijber, R.A. et al. TNT Biotransformation and Detoxification by a Pseudomonas Aeruginosa Strain. Biodegradation 14, 309–319 (2003). https://doi.org/10.1023/A:1025656325834

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025656325834

Navigation