Skip to main content

Advertisement

Log in

Protein kinase C isoform-selective signals that lead to cardiac hypertrophy and the progression of heart failure

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Protein kinase C isoforms comprise a family of structurally related serine/threonine kinases that are activated by second messenger molecules formed via receptor-dependent activation of phospholipase C. Cardiomyocytes co-express multiple protein kinase C isoforms which play key roles in a spectrum of adaptive and maladaptive cardiac responses. This chapter focuses on the structural features, modes of activation, and distinct cellular actions of individual PKC isoforms in the heart. Particular emphasis is placed on progress that comes from studies in molecular models of PKC isoform overexpression or gene deletion in mice. Recent studies that distinguish the functional properties of novel PKC isoforms (PKCδ and PKCε) from each other, and from the actions of the conventional PKC isoforms, and suggest that these proteins may play a particularly significant role in pathways leading to cardiac growth and/or cardioprotection also are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolli R: The late phase of preconditioning. Circ Res 87: 972-983, 2000

    Google Scholar 

  2. Dempsey EC, Newton AC, Mochly-Rosen D, Fields AP, Reyland ME, Insel PA, Messing RO: Protein kinase C isozymes and the regulation of diverse cell responses. Am J Physiol 279: L429-L438, 2000

    Google Scholar 

  3. Mackay K, Mochly-Rosen D: Localization, anchoring, and functions of protein kinase C isozymes in the heart. J Mol Cell Cardiol 33: 1301-1307, 2001

    Google Scholar 

  4. Balafanova Z, Bolli R, Zhang J, Zheng Y, Pass JM, Bhatnagar A, Tang XL, Wang O, Cardwell E, Ping P: Nitric oxide induces nitration of PKCε, facilitating PKCε translocation via enhanced PKCε-RACK2 interactions: A novel mechanism of NO-triggered activation of PKCε. J Biol Chem 277: 15021-15027, 2002

    Google Scholar 

  5. Gschwendt M: Protein kinase Cδ. Eur J Biochem 259: 555-564, 1999

    Google Scholar 

  6. Rybin VO, Buttrick PM, Steinberg SF: PKC-λ is the atypical protein kinase C isoform expressed by immature ventricle. Am J Physiol 272: H1636-H1642, 1997

    Google Scholar 

  7. Rybin VO, Steinberg SF: Protein kinase C isoform expression and regulation in the developing rat heart. Circ Res 74: 299-309, 1994

    Google Scholar 

  8. Rybin VO, Steinberg SF: Do adult rat ventricular myocytes express protein kinase Cα? Am J Physiol 272: H2485-H2491, 1997

    Google Scholar 

  9. Mochly-Rosen D, Henrich CJ, Cheever L, Khaner H, Simpson PC: A protein kinase C isozyme is translocated to cytoskeletal elements on activation. Cell Reg 1: 693-706, 1990

    Google Scholar 

  10. Rohde S, Sabri A, Kamasamudran R, Steinberg SF: The α1-adrenergic receptor subtype-and protein kinase C isoform-dependence of norepinephrine's actions in cardiomyocytes. J Mol Cell Cardiol 32: 1193-1209, 2000

    Google Scholar 

  11. Clerk A, Bogoyevitch MA, Andersson MB, Sugden PH: Differential activation of protein kinase C isoforms by endothelin-1 and phenylephrine and subsequent stimulation of p42 and p44 mitogen-activated protein kinases in ventricular myocytes cultured from neonatal rat hearts. J Biol Chem 269: 32848-32857, 1994

    Google Scholar 

  12. Pucéat M, Hilal-Dandan R, Strulovici B, Brunton LL, Brown JH: Differential regulation of protein kinase C isoforms in isolated neonatal and adult cardiomyocytes. J Biol Chem 269: 16938-16944, 1994

    Google Scholar 

  13. Kariya K, Karns LR, Simpson PC: Expression of a constitutively activated mutant of the β-isozyme of protein kinase C in cardiac myocytes stimulates the promoter of the β-myosin heavy chain isogene. J Biol Chem 266: 10023-10026, 1991

    Google Scholar 

  14. Wakasaki H, Koya D, Schoen FJ, Jirousek MR, Ways DK, Hoit BD, Walsh RA, King GL: Targeted overexpression of protein kinase C βII isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci USA 94: 9320-9325, 1997

    Google Scholar 

  15. Takeishi Y, Chu G, Kirkpatrick DM, Li Z, Wakasaki H, Kranias EG, King GL, Walsh RA: In vivo phosphorylation of cardiac troponin I by protein kinase CβII decreases cardiomyocyte calcium responsiveness and contractility in transgenic mouse hearts. J Clin Invest 102: 72-78, 1998

    Google Scholar 

  16. Bowman JC, Steinberg SF, Jiang T, Gennan D, Fishman GI, Buttrick PM: Expression of protein kinase C-β in the heart causes hypertrophy in adult mice and sudden death in neonates. J Clin Invest 100: 2189-2195, 1997

    Google Scholar 

  17. Jiang T, Pak E, Zhang HL, Kline RP, Steinberg SF. Endothelin-dependent actions in cultured AT-1 cardiac myocytes: The role of the ε-isoform of protein kinase C. Circ Res 78: 724-736, 1996

    Google Scholar 

  18. Strait JB, III, Martin JL, Bayer A, Mestril R, Eble DM, Samarel AM: Role of protein kinase Cε in hypertrophy of cultured neonatal rat ventricular myocytes. Am J Physiol 280: H756-H766, 2001

    Google Scholar 

  19. Takeishi Y, Ping P, Bolli R, Kirkpatrick DL, Hoit BD, Walsh RA: Transgenic overexpression of constitutively active protein kinase Cε causes concentric cardiac hypertrophy. Circ Res 86: 1218-1223, 2000

    Google Scholar 

  20. Leitges M, Schmedt C, Guinamard R, Davoust J, Schaal S, Stabel S, Tarakhovsky A: Immunodeficiency in protein kinase C-β-deficient mice. Science 273: 788-791, 1996

    Google Scholar 

  21. Khasar SG, Lin YH, Martin A, Dadgar J, McMahon T, Wang D, Hundle B, Aley KO, Isenberg W, McCarter G, Green PG, Hodge CW, Levine JD, Messing RO: A novel nociceptor signaling pathway revealed in protein kinase Cε mutant mice. Neuron 24: 253-260, 1999

    Google Scholar 

  22. Roman BB, Geenen DL, Leitges M, Buttrick PM. PKCβ is not necessary for cardiac hypertrophy. Am J Physiol 280: H2264-H2270, 2001

    Google Scholar 

  23. D'Angelo DD, Sakata Y, Lorenz JN, Boivin GP, Walsh RA, Liggett SB, Dorn GW: Transgenic Gαq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci USA 94: 8121-8126, 1997

    Google Scholar 

  24. Adams JW, Sakata Y, Davis MG, Sah VP, Wang Y, Liggett SB, Chien KR, Brown JH, Dorn GW: Enhanced Gαq signaling: A common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 95: 10140-10145, 1998

    Google Scholar 

  25. Mende U, Kagen A, Meister M, Neer EJ: Signal transduction in atria and ventricles of mice with transient cardiac expression of activated G protein αq. Circ Res 85: 1085-1091, 1999

    Google Scholar 

  26. Heidkamp MC, Bayer AL, Martin JL, Samarel AM: Differential activation of mitogen-activated protein kinase cascades and apoptosis by protein kinase Cε and δ in neonatal rat ventricular myocytes. Circ Res 89: 882-890, 2001

    Google Scholar 

  27. Wilson BA, Zhu X, Ho M, Lu L: Pastcurella multocida toxin activates the inositol triphosphate signaling pathway in Xenopus oocytes via Gqα-coupled phospholipase C-β1. J Biol Chem 272: 1268-1275, 1997

    Google Scholar 

  28. Seo B, Choy EW, Maudsley S, Miller WE, Wilson BA, Luttrell LM: Pasteurella multocida toxin stimulates mitogen-activated protein kinase via Gq/11-dependent transactivation of the epidermal growth factor receptor. J Biol Chem 275: 2239-2245, 2000

    Google Scholar 

  29. Sabri A, Wilson BA, Steinberg SF: Dual actions of the Gq agonist Pasteurella Multocida toxin to promote cardiomyocyte hypertrophy and enhance apoptosis susceptibility. Circ Res 90:850-857, 2002

    Google Scholar 

  30. Sabri A, Muske G, Zhang H, Pak E, Darrow A, Andrade-Gordon P, Steinberg SF: Signaling properties and functions of two distinct cardiomyocyte protease-activated receptors. Circ Res 86: 1054-1061, 2000

    Google Scholar 

  31. Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG, Crow MT: The β2-adrenergic receptor delivers an anti-apoptotic signal to cardiac myocyte through Gi-dependent coupling to phosphatidylinositol 3′-kinase. Circ Res 87: 1172-1179, 2000

    Google Scholar 

  32. Franke TF, Kaplan DR, Cantley LC: PI3K: Downstream AKTion blocks apoptosis. Cell 88: 435-437, 1997

    Google Scholar 

  33. Murga C, Laguinge L, Wetzker R, Cuadrado A, Gutkind JS: Activation of Akt/protein kinase B by G protein-coupled receptors. A role for α and βγ subunits of heterotrimeric G proteins acting through phosphatidylinositol-3-OH kinase γ. J Biol Chem 273: 19080-19085, 1998

    Google Scholar 

  34. Bommakanti RK, Vinayak S, Simonds WF: Dual regulation of Akt/Protein kinase B by heterotrimeric G protein subunits. J Biol Chem 275: 38870-38876, 2000

    Google Scholar 

  35. Li W, Zhang J, Flechner L, Hyun T, Yam A, Franke TF, Pierce JH: Protein kinase Cα overexpression stimulates AKT activity and suppresses apoptosis induced by interleukin 3 withdrawal. Oncogene 18: 6564-6572, 1999

    Google Scholar 

  36. Zheng WH, Kar S, Quirion R: Stimulation of protein kinase C modulates insulin-like growth factor-1-induced akt activation in PC12 cells. J Biol Chem 275: 13377-13385, 2000

    Google Scholar 

  37. Matsumoto M, Ogawa W, Hino Y, Furukawa K, Ono Y, Takahashi M, Ohba M, Kuroki T, Kasuga M: Inhibition of insulin-induced activation of AKT by a kinase-deficient mutant of the epsilon isozyme of protein kinase C. J Biol Chem 276: 14400-14406, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabri, A., Steinberg, S.F. Protein kinase C isoform-selective signals that lead to cardiac hypertrophy and the progression of heart failure. Mol Cell Biochem 251, 97–101 (2003). https://doi.org/10.1023/A:1025490017780

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025490017780

Navigation