Skip to main content
Log in

Effect of the Pyranose Ring Conformation on the Vibrational Spectra of Sugar Epoxides

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

Normal vibrations of two sugar epoxides — methyl 2,3-anhydro-4-deoxy-α-D-ribohexopyranoside and methyl 3,4-anhydro-α-D-talohexopyranoside — have been carried out by the molecular mechanics method. Parametrization of the force field used has been performed and the parameters of the oxirane ring for sugar epoxides have been determined. A good agreement between the experimentally observed and calculated frequencies has been obtained. The IR spectral absorption bands of the molecules under investigation in the 1500–400-cm−1 range have been assigned on the basis of the potential energy distribution function of normal vibrations. The investigation of the potential energy surface of these molecules has shown that their pyranose ring can take conformations close to half-chair, boat, skew boat, and twist forms. Comparative analysis of the normal vibrations of various conformers has revealed that the form of the pyranose ring influences the vibrational spectra of sugar epoxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Schuerch, Adv. Carbohydr. Chem. Biochem., 39, 157-212 (1981).

    Google Scholar 

  2. N. R. Williams, Adv. Carbohydr. Chem. Biochem., 25, 109-179 (1970).

    Google Scholar 

  3. J. Defaye, Adv. Carbohydr. Chem. Biochem., 25, 181-228 (1970).

    Google Scholar 

  4. B. S. Thyagarajan (ed.): Selective Organic Transformations, Wiley-Interscience, New York (1972), pp. 1-96.

  5. M. Chmielewski, J. Mieczkowski, W. Priebe, A. Zamojski, and H. Adamowicz, Tetrahedron, 34, 3325-3330 (1978).

    Google Scholar 

  6. K. S. Kim, D. M. Vyas, and W. A. Szarek, Carbohydr. Res., 72, 25-33 (1979).

    Google Scholar 

  7. A. M. Bianucci, G. Catelani, F. Colonna, and L. Monti, Carbohydr. Res., 140, 144-150 (1985).

    Google Scholar 

  8. J. W. Krajewski, P. Gluzinski, Z. Urbanczyk-Lipkowska, A. Banaszek, L. Prkanyi, and A. Kalman, Carbohydr. Res., 144, 13-22 (1985).

    Google Scholar 

  9. J. W. Krajewski, Z. Urbanczyk-Lipkowska, P. Gluzinski, and A. Banaszek, Carbohydr. Res., 194, 31-36 (1989).

    Google Scholar 

  10. J. W. Krajewski, P. Gluzinski, A. Banaszek, N. M. Galitskii, G. A. Yasnitskii, A. E. Golikov, and A. J. Verenich, Carbohydr. Res., 173, 145-149 (1988).

    Google Scholar 

  11. J. W. Krajewski, P. Gluzinski, A. Banaszek, G. Argay, and A. Kalman, Carbohydr. Res., 166, 13-18 (1987).

    Google Scholar 

  12. J. W. Krajewski, P. Gluzinski, Z. Urbanczyk-Lipkowska, and A. Zamojski, Carbohydr. Res., 148, 1-11 (1986).

    Google Scholar 

  13. J. W. Krajewski, P. Gluzinski, Z. Urbanczyk-Lipkowska, and A. Banaszek, Carbohydr. Res., 125, 203-216 (1984).

    Google Scholar 

  14. J. W. Krajewski, P. Gluzinski, and A. Banaszek, Carbohydr. Res., 203, 195-203 (1990).

    Google Scholar 

  15. V. P. Panov and R. G. Zhbankov: Conformations of Sugars [in Russian], Minsk (1975), p. 135.

  16. R. G. Zhbankov and P. V. Kozlov, Physics of Cellulose and Its Derivatives [in Russian], Minsk (1983), p. 64.

  17. A. D. French and J. W. Brady (eds.), Computer Modeling of Carbohydrate Molecules, Washington (1990).

  18. M. Sekkal, P. Legrand, G. Vergoten, and M. Dauchez, Spectrochim. Acta, 48A, 259-273 (1992).

    Google Scholar 

  19. M. Dauchez, P. Derreumaux, P. Lagant, G. Vergoten, M. Sekkal, and P. Legrand, Spectrochim. Acta, 50A, 87-104 (1994).

    Google Scholar 

  20. M. Dauchez, P. Lagant, P. Derreumaux, G. Vergoten, M. Sekkal, and B. Sombret, Spectrochim. Acta, 50A, 105-118 (1994).

    Google Scholar 

  21. M. Dauchez, P. Derreumaux, P. Lagant, and G. Vergoten, J. Comput. Chem., 16, 188-199 (1995).

    Google Scholar 

  22. M. Dauchez, P. Derreumaux, and G. Vergoten, J. Comput. Chem., 14, 263-277 (1992).

    Google Scholar 

  23. I. Kouach-Alix, M. Dauchez, M. Sekkal, and G. Vergoten, J. Raman Spectrosc., 26, 223-231 (1995).

    Google Scholar 

  24. V. Durier and F. Tristram, and G. Vergoten, J. Mol. Struct. (Theochem.), 395-396, 81-90 (1997).

    Google Scholar 

  25. V. M. Andrianov, R. G. Zhbankov, and V. G. Dashevskii, Zh. Strukt. Khim., 21, 35-41 (1980).

    Google Scholar 

  26. V. G. Dashevskii, Zh. Strukt. Khim., 11, 912-918 (1970).

    Google Scholar 

  27. R. E. Reeves, Ann. Rev. Biochem., 27, 15 (1958).

    Google Scholar 

  28. V. M. Andrianov, S. G. Kirillova, and R. G. Zhbankov, J. Mol. Struct., 412, 103-113 (1997).

    Google Scholar 

  29. S. G. Kirillova, V. M. Andrianov, and R. G. Zhbankov, Theor. Chem. Acc., 101, 215-222 (1999).

    Google Scholar 

  30. V. M. Andrianov, S. G. Kirillova, and R. G. Zhbankov, Zh. Fiz. Khim., 69, 148-151 (1995).

    Google Scholar 

  31. V. M. Andrianov, S. G. Kirillova, and R. G. Zhbankov, Zh. Prikl. Spektrosk., 62, 62-71 (1995).

    Google Scholar 

  32. V. M. Andrianov, S. G. Kirillova, and R. G. Zhbankov, Zh. Strukt. Khim., 36, 330-337 (1995).

    Google Scholar 

  33. P. Painter, M. M. Coleman, and J. S. Koenig: The Theory of Vibrational Spectroscopy and Its Application to Polymer Materials [Russian translation], Moscow (1986), p. 136.

  34. P. Derreumaux and G. Vergoten, J. Chem. Phys., 102, 8586-8605 (1995).

    Google Scholar 

  35. F. Tristram, V. Durier, and G. Vergoten, J. Mol. Struct., 377, 47-56 (1996).

    Google Scholar 

  36. M. Chiba, F. Tristram, and G. Vergoten, J. Mol. Struct., 405, 113-122 (1997).

    Google Scholar 

  37. J. Bomstein, Anal. Chem., 30, 544-546 (1958).

    Google Scholar 

  38. W. A. Patterson, Anal. Chem., 26, 823-835 (1954).

    Google Scholar 

  39. L. K. Prikhodchenko, T. E. Kolosova, R. G. Zhabnkov, A. Zamoiskii, and A. Banashek, Zh. Prikl. Spektrosk., 64, 17-18 (1994).

    Google Scholar 

  40. R. G. Zhbankov, Infrared Spectra of Cellulose and Its Derivatives [in Russian], Minsk (1964).

  41. M. Mathlouthi and J. L. Koenig, Adv. Carbohydr. Chem. Biochem., 44, 7-89 (1986).

    Google Scholar 

  42. E. V. Korolik, Low-Temperature Infrared Spectra and Structure of Carbohydrates, Candidate Dissertation (in Physics and Mathematics), Minsk (1985).

  43. V. M. Andrianov, R. G. Zhbankov, and V. D. Dashevskii, Zh. Prikl. Spektrosk., 38, 240-247 (1983).

    Google Scholar 

  44. L. Pietila, J. Mol. Struct., 195, 111-132 (1989).

    Google Scholar 

  45. T. Sundius and K. Rasmussen, J. Mol. Struct., 65, 215-218 (1980).

    Google Scholar 

  46. H. A. Wells and R. H. Atalla, J. Mol. Struct., 224, 385-424 (1990).

    Google Scholar 

  47. R. G. Zhbankov, V. M. Andrianov, Kh. Rataichak, and M. Markhevka, Zh. Fiz. Khim., 69, 553-558 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirillova, S.G., Andrianov, V.M. & Zhbankov, R.G. Effect of the Pyranose Ring Conformation on the Vibrational Spectra of Sugar Epoxides. Journal of Applied Spectroscopy 70, 355–364 (2003). https://doi.org/10.1023/A:1025173219936

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025173219936

Navigation