Skip to main content
Log in

Development and Application of Novel Thin-Film Spectroelectrochemical Sensors Possessing Three Modes of Selectivity*

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A thin-film spectroelectrochemical sensor design employing three modes of selectivity is described. Selectivity is achieved through (1) partitioning of the analyte into a chemically selective film, (2) electrochemical cycling of the analyte over a given potential window, and (3) absorbance of one of the redox states of the analyte at the chosen analytical wavelength. Optimization of the sensor is described with respect to both improved selectivity and sensitivity, as well as its response to a number of different chemical species. Lastly, application of the sensor for determination of ferrocyanide, Fe(CN)4- 6, in both radioactive waste simulant and actual waste storage tank contents is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spectroelectrochemistry: Theory and Practice, Gale, R.J., Ed., New York: Plenum, 1988.

    Google Scholar 

  2. Kuwana, T. and Darlington, R.K., Anal. Chem., 1964, vol. 36, p. 2023.

    Google Scholar 

  3. Kuwana, T. and Winograd, N., in Electroanalytical Chemistry, Bard, A.J., Ed., New York: Marcel Dekker, 1974, vol. 7.

    Google Scholar 

  4. Slaterbeck, A.F., Shi, Y., Ridgway, T.H., Seliskar, C.J., and Heineman, W.R., in Proc. of Symp. on Chemical and Biological Sensor and Analytical Electrochemical Methods, Ricco, A.J., Butler, M.A., Vanysek, P., Horval, G., and Silva, A.F., Eds., 1997, vol. 97-19, p. 50.

  5. Shi, Y., Slaterbeck, A.F., Seliskar, C.J., and Heineman, W.R., Anal. Chem., 1997, vol. 69, p. 3679.

    Google Scholar 

  6. Shi, Y., Seliskar, C.J., and Heineman, W.R., Anal. Chem., 1997, vol. 69, p. 4819.

    Google Scholar 

  7. Ross, S.E., Slaterbeck, A.F., Shi, Y., Aryal, S., Maizels, M., Seliskar, C.J., Heineman, W.R., Ridgway, T.H., and Nevin, J.H., Proc. SPIE, 1999, vol. 3537, p. 268.

    Google Scholar 

  8. Slaterbeck, A.F., Ridgway, T.H., Seliskar, C.J., and Heineman, W.R., Anal. Chem., 1999, vol. 71, p. 1196.

    Google Scholar 

  9. Hu, Z., Slaterbeck, A.F., Seliskar, C.J., Ridgway, T.H., and Heineman, W.R., Langmuir, 1999, vol. 15, p. 767.

    Google Scholar 

  10. Gao, L., Seliskar, C.J., and Heineman, W.R., Anal. Chem., 1999, vol. 71, p. 4061.

    Google Scholar 

  11. . Slaterbeck, A.F., Stegemiller, M.L., Seliskar, C.J., Ridgway, T.H., and Heineman, W.R., Anal. Chem., 2000, vol. 72, p. 5567.

    Google Scholar 

  12. DiVirglio-Thomas, J.M., Seliskar, C.J., and Heineman, W.R., Anal. Chem., 2000, vol. 72, p. 3461.

    Google Scholar 

  13. Maizels, M., Seliskar, C.J., and Heineman, W.R., Electroanalysis, 2000, vol. 12, p. 1356.

    Google Scholar 

  14. Gao, L., Seliskar, C.J., and Heineman, W.R., Electroanalysis, 2001, vol. 13, p. 613.

    Google Scholar 

  15. Ross, S.E., Seliskar, C.J., and Heineman, W.R., Anal. Chem., 2000, vol. 72, p. 5549.

    Google Scholar 

  16. Maizels, M., Stegemiller, M.L., Ross, S.E., Slaterbeck, A.F., Shi, Y., Ridgway, T.H., Heineman, W.R., Seliskar, C.J., and Bryan, S.A., in ACS Symposium Series, Eller, P.G. and Heineman, W.R., Eds., Washington, D.C., 2001, vol. 77, p. 364.

  17. Maizels, M., Seliskar, C.J., and Heineman, W.R., Electroanalysis, 2002 (in press).

  18. Stegemiller, M.L., Heineman, W.R., Seliskar, C.J., Ridgway, T.H., and Bryan, S.A., Env. Sci. Tech., 2002 (in press).

  19. Ross, S.E., Seliskar, C.J., Heineman, W.R., Aryo, S., and Nevin, J.H., in Proceedings, Butler, M., Vanysek, P., and Yamazoe, N., Eds., Pennington (NJ): The Electrochem. Soc., 2001, vol. 2001-18, p. 499.

    Google Scholar 

  20. Richardson, J.N., Dyer, A.L., Stegemiller, M.L., Zudans, I., Seliskar, C.J., and Heineman, W.R., Anal. Chem., 2002, vol. 74, p. 3330.

    Google Scholar 

  21. Shi, Y. and Seliskar, C.J., Chem. Mater., 1997, vol. 9, p. 821.

    Google Scholar 

  22. Gao, L., Seliskar, C.J., and Milstein, L., Appl. Spectrosc., 1997, vol. 51, p. 1745.

    Google Scholar 

  23. Gao, L., Shi, Y., Slaterbeck, A.F., Seliskar, C.J., and Heineman, W.R., Proc. SPIE, 1998, vol. 66, p. 3258.

    Google Scholar 

  24. Shi, Y., Slaterbeck, A.F., Aryal, S., Seliskar, C.J., Heineman, W.R., Ridgway, T.H., and Nevin, J.H., Proc. SPIE, 1998, vol. 66, p. 3258.

    Google Scholar 

  25. Paddock, J., Seliskar, C.J., and Heineman, W.R., 2002 (in preparation).

  26. Plowman, T.E., Saavedra, S.S., and Reichert, W.M., Biomaterials, 1998, vol. 19, p. 341.

    Google Scholar 

  27. Lukosz, W., Sens. Actuators B, 1995, vol. 29, p. 37.

    Google Scholar 

  28. Itoh, K. and Fujishima, A., in Electrochemistry in Transitions, Murphy, O.J., Ed., New York: Plenum, 1992, p. 7043.

    Google Scholar 

  29. Itoh, K. and Fujishima, A., J. Phys. Chem., 1988, vol. 92, p. 7043.

    Google Scholar 

  30. Piraud, C., Mwarania, E., Wylangowski, G., Wilkinson, J., O'Dwyer, K., and Schiffrin, D.J., Anal. Chem., 1992, vol. 64, p. 651.

    Google Scholar 

  31. Piraud, C., Mwarania, E.K., Yao, J., O'Dwyer, K., Schiffrin, D.J., and Wilkinson, J.S., Lightwave Tech., 1992, vol. 10, p. 693.

    Google Scholar 

  32. Dunphy, D.R., Mendes, S.B., Saavedra, S.S., and Armstrong, N.R., Anal. Chem., 1997, vol. 69, p. 3086.

    Google Scholar 

  33. Reed, A.H. and Yeager, E., Electrochim. Acta, 1970, vol. 15, p. 1345.

    Google Scholar 

  34. Winograd, N. and Kuwana, T., J. Electroanal. Chem., 1969, vol. 23, p. 333.

    Google Scholar 

  35. Klein, R. and Voges, E., Sens. Actuators B, 1993, vol. 11, p. 221.

    Google Scholar 

  36. Stegemiller, M.L., 2000 (unpublished).

  37. Pisez, M. and Bartos, J., Colorimetric and Fluorometric Analysis of Organic Compounds and Drugs, New York: Marcel Dekker, 1974.

    Google Scholar 

  38. Ingle, J.D., Jr., Spectrochemical Analysis, Englewood Cliffs: Prentice Hall, 1988, p. 438.

    Google Scholar 

  39. Buttry, D.A. and Anson, F.C., J. Am. Chem. Soc., 1982, vol. 104, p. 4824.

    Google Scholar 

  40. Matsui, K. and Momose, F., Chem. Mater., 1997, vol. 9, p. 2588.

    Google Scholar 

  41. Colon, J.L. and Martin, C.R., Langmuir, 1993, vol. 9, p. 1066.

    Google Scholar 

  42. Castellano, F.N., Heimer, T.A., Tandhasetti, M.T., and Meyer, G.J., Chem. Mater., 1994, vol. 6, p. 1041.

    Google Scholar 

  43. Demas, J.N. and DeGraff, B.A., Anal. Chem., 1991, vol. 63, p. 829A.

    Google Scholar 

  44. Xy, W., McDonough, R.C., Langsdorf, B., Demas, J.N., and DeGraff, B.A., Anal. Chem., 1994, vol. 66, p. 4133.

    Google Scholar 

  45. Monk, D.J., Ridgway, T.H., Heineman, W.R., and Seliskar, C.J., Electroanalysis, 2002 (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heineman, W.R., Seliskar, C.J. & Richardson, J.N. Development and Application of Novel Thin-Film Spectroelectrochemical Sensors Possessing Three Modes of Selectivity*. Russian Journal of Electrochemistry 39, 884–893 (2003). https://doi.org/10.1023/A:1025116524789

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025116524789

Navigation