Skip to main content

Thin Film Biosensors

  • Chapter
  • First Online:
Thin Films and Coatings in Biology

Abstract

New generation biosensors are analytical compact devices made of thin films. Sensitivity, specificity, rapid response time, ease-of-use, and low cost are the major advantages of these biosensors. All of these properties are closely related with thicknesses of the films used in fabrication of the sensor. The detection principle of a biosensor is mainly based on the interaction of the biological analyte with the surface-modified thin film. The thin film acts as a physicochemical—optical, mechanical, magnetic, and electrical—transducer and converts the signal resulting from the recognition of the biological analyte into another measurable signal. In this chapter, first, the roles of thin films in biosensor applications will be discussed. Then, different types of thin films used in the fabrication of biosensors will be explained. The methods to form organic thin films on sensitive layers for adsorption of biological analytes will be given together with four main methods of detection as: optical, mechanical, magnetic, and electrical. Finally, recent developments will be outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman, J., Setford, S.: Enzymatic biosensors. Mol. Biotechnol. 32(3), 249–268 (2006). doi:10.1385/mb:32:3:249

    Article  Google Scholar 

  2. Kong, T., Su, R., Zhang, B., Zhang, Q., Cheng, G.: CMOS-compatible, label-free silicon-nanowire biosensors to detect cardiac troponin I for acute myocardial infarction diagnosis. Biosens. Bioelectron. 34(1), 267–272 (2012). doi:10.1016/j.bios.2012.02.019

    Article  Google Scholar 

  3. Tan, C.P., Craighead, H.G.: Surface engineering and patterning using parylene for biological applications. Materials 3(3), 1803–1832 (2010). doi:10.3390/ma3031803

    Article  ADS  Google Scholar 

  4. Li, W., Kabius, B., Auciello, O.: Science and technology of biocompatible thin films for implantable biomedical devices. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society Conference Proceedings, pp. 6237–6242. (2010). doi:10.1109/IEMBS.2010.5628056

  5. Farra, R., Sheppard, N.F., McCabe, L., Neer, R.M., Anderson, J.M., Santini, J.T., Cima, M.J., Langer, R.: First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med. 4(122), 121–122 (2012)

    Article  Google Scholar 

  6. Ainslie, K.M., Desai, T.A.: Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. Lab Chip 8(11), 1864–1878 (2008). doi:10.1039/b806446f

    Article  Google Scholar 

  7. Sokolov, A.N., Tee, B.C.K., Bettinger, C.J., Tok, J.B.H., Bao, Z.: Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Acc. Chem. Res. 45(3), 361–371 (2011). doi:10.1021/ar2001233

    Article  Google Scholar 

  8. Chiang, T.-C.: Superconductivity in thin films. Science 306(5703), 1900–1901 (2004). doi:10.1126/science.1106675

    Article  Google Scholar 

  9. Dew-Hughes, D.: The critical current of superconductors: An historical review. Low Temp. Phys. 27(9–10), 713–722 (2001). doi:10.1063/1.1401180

    Article  ADS  Google Scholar 

  10. Ceylan Koydemir, H., Kulah, H., Ozgen, C., Alp, A., Hascelik, G.: MEMS biosensors for detection of methicillin resistant Staphylococcus aureus. Biosens. Bioelectron. 29(1), 1–12 (2011). doi:10.1016/j.bios.2011.07.071

    Article  Google Scholar 

  11. Maloney, J.M., Uhland, S.A., Polito, B.F., Sheppard Jr, N.F., Pelta, C.M., Santini Jr, J.T.: Electrothermally activated microchips for implantable drug delivery and biosensing. J. Controlled Release 109(1–3), 244–255 (2005). doi:10.1016/j.jconrel.2005.09.035

    Article  Google Scholar 

  12. Carlisle, J.A.: Diamond films: Precious biosensors. Nat. Mater. 3(10), 668–669 (2004). doi:10.1038/nmat1225

    Article  ADS  Google Scholar 

  13. Marcon, L., Spriet, C., Coffinier, Y., Galopin, E., Rosnoblet, C., Szunerits, S., Héliot, L., Angrand, P.-O., Boukherroub, R.: Cell adhesion properties on chemically micropatterned boron-doped diamond surfaces. Langmuir 26(19), 15065–15069 (2010). doi:10.1021/la101757f

    Article  Google Scholar 

  14. Wang, H., Griffiths, J.-P., Egdell, R.G., Moloney, M.G., Foord, J.S.: Chemical functionalization of diamond surfaces by reaction with diaryl carbenes. Langmuir 24(3), 862–868 (2008). doi:10.1021/la702701p

    Article  Google Scholar 

  15. Shao, Y.Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y.H.: Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 22(10), 1027–1036 (2010). doi:10.1002/elan.200900571

    Article  Google Scholar 

  16. Becker, H., Gartner, C.: Polymer microfabrication technologies for microfluidic systems. Anal. Bioanal. Chem. 390(1), 89–111 (2008). doi:10.1007/s00216-007-1692-2

    Article  Google Scholar 

  17. Lin, L., Mason, A.J., Post-CMOS parylene packaging for on-chip biosensor arrays. In: Sensors, 2010 IEEE, pp. 1613–1616, 1–4 Nov 2010. doi:10.1109/ICSENS.2010.5690397

  18. Yildirim, E., Kulah, H.: Analysis and characterization of an electrostatically actuated in-plane parylene microvalve. J. Micromech. Microeng. 21(10), 105009 (2011). doi:10500910.1088/0960-1317/21/10/105009

    Article  ADS  Google Scholar 

  19. Choi, C.K., English, A.E., Jun, S.-I., Kihm, K.D., Rack, P.D.: An endothelial cell compatible biosensor fabricated using optically thin indium tin oxide silicon nitride electrodes. Biosens. Bioelectron. 22(11), 2585–2590 (2007). doi:10.1016/j.bios.2006.10.006

    Article  Google Scholar 

  20. Ouyang, B.Y., Chi, C.W., Chen, F.C., Xi, Q.F., Yang, Y.: High-conductivity poly (3,4-ethylenedioxythiophene): poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Adv. Funct. Mater. 15(2), 203–208 (2005). doi:10.1002/adfm.200400016

    Article  Google Scholar 

  21. Schreiber, F.: Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 65(5–8), 151–257 (2000). doi:10.1016/S0079-6816(00)00024-1

    Article  ADS  Google Scholar 

  22. Greg, T.H.: Homobifunctional crosslinkers. In: Bioconjugate Techniques, 2nd edn. Academic Press, New York, pp. 234–275 (2008) doi:10.1016/B978-0-12-370501-3.00004-7 (Chap. 4)

  23. Greg, T.H.: Heterobifunctional crosslinkers. In: Bioconjugate Techniques, 2nd edn. Academic Press, New York, pp. 276–335 (2008) doi:10.1016/B978-0-12-370501-3.00005-9 (Chap. 5)

  24. Besselink, G.A.J., Schasfoort, R.B.M., Bergveld, P.: Modification of ISFETs with a monolayer of latex beads for specific detection of proteins. Biosens. Bioelectron. 18(9), 1109–1114 (2003). doi:10.1016/S0956-5663(02)00243-9

    Article  Google Scholar 

  25. Wang, C., Trau, D.: A portable generic DNA bioassay system based on in situ oligonucleotide synthesis and hybridization detection. Biosens. Bioelectron. 26(5), 2436–2441 (2011). doi:10.1016/j.bios.2010.10.028

    Article  Google Scholar 

  26. Arya, S.K., Chornokur, G., Venugopal, M., Bhansali, S.: Dithiobis (succinimidyl propionate) modified gold microarray electrode based electrochemical immunosensor for ultrasensitive detection of cortisol. Biosens. Bioelectron. 25(10), 2296–2301 (2010). doi:10.1016/j.bios.2010.03.016

    Article  Google Scholar 

  27. Chang, S.-C., Pereira-Rodrigues, N., Henderson, J.R., Cole, A., Bedioui, F., McNeil, C.J.: An electrochemical sensor array system for the direct, simultaneous in vitro monitoring of nitric oxide and superoxide production by cultured cells. Biosens. Bioelectron. 21(6), 917–922 (2005). doi:10.1016/j.bios.2005.02.015

    Article  Google Scholar 

  28. Kim, N., Park, I.-S.: Application of a flow-type antibody sensor to the detection of Escherichia coli in various foods. Biosens. Bioelectron. 18(9), 1101–1107 (2003). doi:10.1016/S0956-5663(02)00240-3

    Article  Google Scholar 

  29. Capobianco, J.A., Shih, W.-H., Leu, J.-H., Lo, G.C.-F., Shih, W.Y.: Label free detection of white spot syndrome virus using lead magnesium niobate–lead titanate piezoelectric microcantilever sensors. Biosens. Bioelectron. 26(3), 964–969 (2010). doi:10.1016/j.bios.2010.08.004

    Article  Google Scholar 

  30. Viswanathan, S., Rani, C., Vijay Anand, A., Ho, J-aA: Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode. Biosens. Bioelectron. 24(7), 1984–1989 (2009). doi:10.1016/j.bios.2008.10.006

    Article  Google Scholar 

  31. Cha, J., Han, J.I., Choi, Y., Yoon, D.S., Oh, K.W., Lim, G.: DNA hybridization electrochemical sensor using conducting polymer. Biosens. Bioelectron. 18(10), 1241–1247 (2003). doi:10.1016/S0956-5663(03)00088-5

    Article  Google Scholar 

  32. Lee, K.-H., Su, Y.-D., Chen, S.-J., Tseng, F.-G., Lee, G.-B.: Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay. Biosens. Bioelectron. 23(4), 466–472 (2007). doi:10.1016/j.bios.2007.05.007

    Article  Google Scholar 

  33. Wang, Y., He, X., Wang, K., Ni, X., Su, J., Chen, Z.: Electrochemical detection of thrombin based on aptamer and ferrocenylhexanethiol loaded silica nanocapsules. Biosens. Bioelectron. 26(8), 3536–3541 (2011). doi:10.1016/j.bios.2011.01.041

    Article  Google Scholar 

  34. Yin, H., Zhou, Y., Zhang, H., Meng, X., Ai, S.: Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system. Biosens. Bioelectron. 33(1), 247–253 (2012). doi:10.1016/j.bios.2012.01.014

    Article  Google Scholar 

  35. Ishikawa, F.N., Chang, H.K., Curreli, M., Liao, H.I., Olson, C.A., Chen, P.C., Zhang, R., Roberts, R.W., Sun, R., Cote, R.J., Thompson, M.E., Zhou, C.W.: Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano 3(5), 1219–1224 (2009). doi:10.1021/nn900086c

    Article  Google Scholar 

  36. Sellers, H., Ulman, A., Shnidman, Y., Eilers, J.E.: Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. J. Am. Chem. Soc. 115(21), 9389–9401 (1993). doi:10.1021/ja00074a004

    Article  Google Scholar 

  37. Frank, S.: Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 65(5–8), 151–257 (2000)

    Google Scholar 

  38. Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M.: Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105(4), 1103–1169 (2005). doi:10.1021/cr0300789

    Article  Google Scholar 

  39. Greg, T.H.: The chemistry of reactive groups. In: Bioconjugate Techniques. Academic Press, San Diego, pp. 137–166 (1996). doi:10.1016/B978-012342335-1/50003-8

  40. Hermanson, G.T.: Silane coupling agents. In: Bioconjugate Techniques, 2nd edn. Academic Press, New York, pp. 562–581 (2008). doi:10.1016/B978-0-12-370501-3.00013-8 (Chap. 13)

  41. Gotz, S., Karst, U.: Recent developments in optical detection methods for microchip separations. Anal. Bioanal. Chem. 387(1), 183–192 (2007). doi:10.1007/s00216-006-0820-8

    Article  Google Scholar 

  42. Stedtfeld, R.D., Tourlousse, D.M., Seyrig, G., Stedtfeld, T.M., Kronlein, M., Price, S., Ahmad, F., Gulari, E., Tiedje, J.M., Hashsham, S.A.: Gene-Z: A device for point of care genetic testing using a smartphone. Lab Chip 12, 1454–1462 (2012). doi:10.1039/C2LC21226A

    Article  Google Scholar 

  43. Yao, B., Luo, G., Wang, L., Gao, Y., Lei, G., Ren, K., Chen, L., Wang, Y., Hu, Y., Qiu, Y.: A microfluidic device using a green organic light emitting diode as an integrated excitation source. Lab Chip 5(10), 1041–1047 (2005). doi:10.1039/B504959H

    Article  Google Scholar 

  44. Bashir, R.: BioMEMS: State-of-the-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 56(11), 1565–1586 (2004). doi:10.1016/j.addr.2004.03.002

    Article  Google Scholar 

  45. Johnson, B.N., Mutharasan, R.: Biosensing using dynamic-mode cantilever sensors: A review. Biosens. Bioelectron. 32(1), 1–18 (2012). doi:10.1016/j.bios.2011.10.054

    Article  Google Scholar 

  46. Eroglu, D., Kulah, H.: Quality factor enhancement of lateral microresonators in liquid media by hydrophobic coating. J. Microelectromech. Syst. 20(5), 1068–1070 (2011). doi:10.1109/jmems.2011.2160936

    Article  Google Scholar 

  47. Burg, T.P., Godin, M., Knudsen, S.M., Shen, W., Carlson, G., Foster, J.S., Babcock, K., Manalis, S.R.: Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446(7139), 1066–1069 (2007). doi:10.1038/nature05741

    Article  ADS  Google Scholar 

  48. Ceylan Koydemir, H., Kulah, H., Ozgen, C.: A micro electrochemical sensor for the detection of methicillin resistance in Staphylococcus aureus. Paper presented at the Biosensors 2012: 22nd Anniversary World Congress on Biosensors, Cancun, Mexico (2012)

    Google Scholar 

  49. Gervais, L., de Rooij, N., Delamarche, E.: Microfluidic chips for point-of-care immunodiagnostics. Adv. Mater. 23(24), H151–H176 (2011). doi:10.1002/adma.201100464

    Article  Google Scholar 

  50. Baier, T., Hansen-Hagge, T.E., Gransee, R., Crombe, A., Schmahl, S., Paulus, C., Drese, K.S., Keegan, H., Martin, C., O’Leary, J.J., Furuberg, L., Solli, L., Gronn, P., Falang, I.M., Karlgard, A., Gulliksen, A., Karlsen, F.: Hands-free sample preparation platform for nucleic acid analysis. Lab Chip 9(23), 3399–3405 (2009). doi:10.1039/B910421F

    Article  Google Scholar 

  51. Tarhan, M.C., Yokokawa, R., Bottier, C., Collard, D., Fujita, H.: A nano-needle/microtubule composite gliding on a kinesin-coated surface for target molecule transport. Lab Chip 10(1), 86–91 (2010). doi:10.1039/B913312G

    Article  Google Scholar 

  52. Bottier, C., Fattaccioli, J., Tarhan, M.C., Yokokawa, R., Morin, F.O., Kim, B., Collard, D., Fujita, H.: Active transport of oil droplets along oriented microtubules by kinesin molecular motors. Lab Chip 9(12), 1694–1700 (2009). doi:10.1039/B822519B

    Article  Google Scholar 

  53. Beech, J.P., Holm, S.H., Adolfsson, K., Tegenfeldt, J.O.: Sorting cells by size, shape and deformability. Lab Chip 12(6), 1048–1051 (2012). doi:10.1039/C2LC21083E

    Article  Google Scholar 

  54. Nam, J., Lim, H., Kim, D., Jung, H., Shin, S.: Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid. Lab Chip 12(7), 1347–1354 (2012). doi:10.1039/C2LC21304D

    Article  Google Scholar 

  55. Zhang, C., Khoshmanesh, K., Mitchell, A., Kalantar-zadeh, K.: Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal. Bioanal. Chem. 396(1), 401–420 (2010). doi:10.1007/s00216-009-2922-6

    Article  Google Scholar 

  56. Hong, J.W., Studer, V., Hang, G., Anderson, W.F., Quake, S.R.: A nanoliter-scale nucleic acid processor with parallel architecture. Nat. Biotechnol. 22(4), 435–439 (2004). doi:10.1038/nbt951

    Article  Google Scholar 

  57. Easley, C.J., Karlinsey, J.M., Bienvenue, J.M., Legendre, L.A., Roper, M.G., Feldman, S.H., Hughes, M.A., Hewlett, E.L., Merkel, T.J., Ferrance, J.P., Landers, J.P.: A fully integrated microfluidic genetic analysis system with sample-in–answer-out capability. Proc. Nat. Acad. Sci. 103(51), 19272–19277 (2006). doi:10.1073/pnas.0604663103

    Article  ADS  Google Scholar 

  58. Bienvenue, J.M., Duncalf, N., Marchiarullo, D., Ferrance, J.P., Landers, J.P.: Microchip-based cell lysis and DNA extraction from sperm cells for application to forensic analysis. J. Forensic Sci. 51(2), 266–273 (2006). doi:10.1111/j.1556-4029.2006.00054.x

    Article  Google Scholar 

  59. Lee, J.-G., Cheong, K.H., Huh, N., Kim, S., Choi, J.-W., Ko, C.: Microchip-based one step DNA extraction and real-time PCR in one chamber for rapid pathogen identification. Lab Chip 6(7), 886–895 (2006). doi:10.1039/B515876A

    Article  Google Scholar 

  60. Cho, Y.-K., Lee, J.-G., Park, J.-M., Lee, B.-S., Lee, Y., Ko, C.: One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7(5), 565–573 (2007). doi:10.1039/B616115D

    Article  Google Scholar 

  61. Focke, M., Kosse, D., Muller, C., Reinecke, H., Zengerle, R., von Stetten, F.: Lab-on-a-foil: microfluidics on thin and flexible films. Lab Chip 10(11), 1365–1386 (2010). doi:10.1039/C001195A

    Article  Google Scholar 

  62. Hoffmann, J., Mark, D., Lutz, S., Zengerle, R., von Stetten, F.: Pre-storage of liquid reagents in glass ampoules for DNA extraction on a fully integrated lab-on-a-chip cartridge. Lab Chip 10(11), 1480–1484 (2010). doi:10.1039/B926139G

    Article  Google Scholar 

  63. Hitzbleck, M., Gervais, L., Delamarche, E.: Controlled release of reagents in capillary-driven microfluidics using reagent integrators. Lab Chip 11(16), 2680–2685 (2011). doi:10.1039/C1LC20282K

    Article  Google Scholar 

  64. Asiello, P.J., Baeumner, A.J.: Miniaturized isothermal nucleic acid amplification, a review. Lab Chip 11(8), 1420–1430 (2011). doi:10.1039/C0LC00666A

    Article  Google Scholar 

  65. Schoder, D., Schwalwiess, A., Schauberger, G., Kuhn, M., Hoorfar, J., Wagner, M.: Physical characteristics of six new thermocyclers. Clin. Chem. 49(6), 960–963 (2003). doi:10.1373/49.6.960

    Article  Google Scholar 

  66. Shen, K., Chen, X., Guo, M., Cheng, J.: A microchip-based PCR device using flexible printed circuit technology. Sens. Actuators B Chemical 105(2), 251–258 (2005). doi:10.1016/j.snb.2004.05.069

    Google Scholar 

  67. Northrup, M.A., Ching, M.T., White, R.M., Watson, R.T., (1993) DNA amplification with a microfabricated reaction chamber. Paper presented at the 7th International Conference Solid-State Sensors and Actuators (Transducers ‘93), Yokohama, Japan, 7–10 June 1993

    Google Scholar 

  68. Jung, J.H., Choi, S.J., Park, B.H., Choi, Y.K., Seo, T.S.: Ultrafast rotary PCR system for multiple influenza viral RNA detection. Lab Chip 12(9), 1598–1600 (2012). doi:10.1039/C2LC21269B

    Article  Google Scholar 

  69. Chung, K.H., Park, S.H., Choi, Y.H.: A palmtop PCR system with a disposable polymer chip operated by the thermosiphon effect. Lab Chip 10(2), 202–210 (2010). doi:10.1039/B915022F

    Article  Google Scholar 

  70. Liu, Y., Rauch, C.B., Stevens, R.L., Lenigk, R., Yang, J., Rhine, D.B., Grodzinski, P.: DNA amplification and hybridization assays in integrated plastic monolithic devices. Anal. Chem. 74(13), 3063–3070 (2002). doi:10.1021/ac020094q

    Article  Google Scholar 

  71. Gulliksen, A., Solli, L., Karlsen, F., Rogne, H., Hovig, E., Nordstrøm, T., Sirevåg, R.: Real-time nucleic acid sequence-based amplification in nanoliter volumes. Anal. Chem. 76(1), 9–14 (2003). doi:10.1021/ac034779h

    Article  Google Scholar 

  72. Deiman, B., van Aarle, P., Sillekens, P.: Characteristics and applications of nucleic acid sequence-based amplification (NASBA). Mol. Biotechnol. 20(2), 163–179 (2002). doi:10.1385/mb:20:2:163

    Article  Google Scholar 

  73. Furuberg, L., Mielnik, M., Gulliksen, A., Solli, L., Johansen, I.R., Voitel, J., Baier, T., Riegger, L., Karlsen, F.: RNA amplification chip with parallel microchannels and droplet positioning using capillary valves. Microsys. Technol. Micro. Nanosystems Inf Storage Process. Sys. 14(4–5), 673–681 (2008). doi:10.1007/s00542-007-0515-x

    Google Scholar 

  74. Dimov, I.K., Garcia-Cordero, J.L., O’Grady, J., Poulsen, C.R., Viguier, C., Kent, L., Daly, P., Lincoln, B., Maher, M., O’Kennedy, R., Smith, T.J., Ricco, A.J., Lee, L.P.: Integrated microfluidic tmRNA purification and real-time NASBA device for molecular diagnostics. Lab Chip 8(12), 2071–2078 (2008). doi:10.1039/B812515E

    Article  Google Scholar 

  75. Yang, J.M., Bell, J., Huang, Y., Tirado, M., Thomas, D., Forster, A.H., Haigis, R.W., Swanson, P.D., Wallace, R.B., Martinsons, B., Krihak, M.: An integrated, stacked microlaboratory for biological agent detection with DNA and immunoassays. Biosens. Bioelectron. 17(6–7), 605–618 (2002). doi:10.1016/S0956-5663(02)00023-4

    Article  Google Scholar 

  76. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., Hase, T.: Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28(12), e63 (2000). doi:10.1093/nar/28.12.e63

    Article  Google Scholar 

  77. Mori, Y., Notomi, T.: Loop-mediated isothermal amplification (LAMP): A rapid, accurate, and cost-effective diagnostic method for infectious diseases. J. Infect. Chemotherapy 15(2), 62–69 (2009). doi:10.1007/s10156-009-0669-9

    Article  Google Scholar 

  78. Fang, X.E., Liu, Y.Y., Kong, J.L., Jiang, X.Y.: Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal. Chem. 82(7), 3002–3006 (2010). doi:10.1021/ac1000652

    Article  Google Scholar 

  79. Liu, C.C., Mauk, M.G., Bau, H.H.: A disposable, integrated loop-mediated isothermal amplification cassette with thermally actuated valves. Microfluid. Nanofluid. 11(2), 209–220 (2011). doi:10.1007/s10404-011-0788-3

    Article  Google Scholar 

  80. Mahalanabis, M., Do, J., Almuayad, H., Zhang, J.Y., Klapperich, C.M.: An integrated disposable device for DNA extraction and helicase dependent amplification. Biomed. Microdevices 12(2), 353–359 (2010). doi:10.1007/s10544-009-9391-8

    Article  Google Scholar 

  81. Mahalanabis, M., Do, J., Almuayad, H., Zhang, J.Y., Klapperich, C.M.: An integrated disposable device for DNA extraction and helicase dependent amplification, vol 12, p. 353, 2010. Biomedical Microdevices 13(3), 599–602 (2011). doi:10.1007/s10544-011-9518-6

  82. Kuhn, H., Demidov, V.V., Frank-Kamenetskii, M.D.: Rolling-circle amplification under topological constraints. Nucleic Acids Res. 30(2), 574–580 (2002). doi:10.1093/nar/30.2.574

    Article  Google Scholar 

  83. Mahmoudian, L., Kaji, N., Tokeshi, M., Nilsson, M., Baba, Y.: Rolling circle amplification and circle-to-circle amplification of a specific gene integrated with electrophoretic analysis on a single chip. Anal. Chem. 80(7), 2483–2490 (2008). doi:10.1021/ac702289j

    Article  Google Scholar 

  84. Sato, K., Tachihara, A., Renberg, B., Mawatari, K., Tanaka, Y., Jarvius, J., Nilsson, M., Kitamori, T.: Microbead-based rolling circle amplification in a microchip for sensitive DNA detection. Lab Chip 10(10), 1262–1266 (2010). doi:10.1039/b927460j

    Article  Google Scholar 

  85. Lutz, S., Weber, P., Focke, M., Faltin, B., Hoffmann, J., Muller, C., Mark, D., Roth, G., Munday, P., Armes, N., Piepenburg, O., Zengerle, R., von Stetten, F.: Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip 10(7), 887–893 (2010). doi:10.1039/b921140c

    Article  Google Scholar 

  86. Marcy, Y., Ishoey, T., Lasken, R.S., Stockwell, T.B., Walenz, B.P., Halpern, A.L., Beeson, K.Y., Goldberg, S.M.D., Quake, S.R.: Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genet. 3(9), 1702–1708 (2007). doi:10.1371/journal.pgen.0030155

    Article  Google Scholar 

  87. Tan, E., Erwin, B., Dames, S., Ferguson, T., Buechel, M., Irvine, B., Voelkerding, K., Niemz, A.: Specific versus nonspecific isothermal dna amplification through thermophilic polymerase and nicking enzyme activities†. Biochemistry 47(38), 9987–9999 (2008). doi:10.1021/bi800746p

    Article  Google Scholar 

  88. Heidenreich, P.A., Trogdon, J.G., Khavjou, O.A., Butler, J., Dracup, K., Ezekowitz, M.D., Finkelstein, E.A., Hong, Y., Johnston, S.C., Khera, A., Lloyd-Jones, D.M., Nelson, S.A., Nichol, G., Orenstein, D., Wilson, P.W.F., Woo, Y.J.: Forecasting the future of cardiovascular disease in the United States. Circulation (2011). doi:10.1161/CIR.0b013e31820a55f5

    MATH  Google Scholar 

  89. EUROPA: Cardiovascular diseases: European commission. http://ec.europa.eu/health-eu/health_problems/cardiovascular_diseases/index_en.htm (2012). Accessed 01 April 2012

  90. Mohammed, M.-I., Desmulliez, M.P.Y.: Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: A review. Lab Chip 11(4), 569–595 (2011). doi:10.1039/C0LC00204F

    Article  Google Scholar 

  91. Kim, W.-J., Kim, B.K., Kim, A., Huh, C., Ah, C.S., Kim, K.-H., Hong, J., Park, S.H., Song, S., Song, J., Sung, G.Y.: Response to cardiac markers in human serum analyzed by guided-mode resonance biosensor. Anal. Chem. 82(23), 9686–9693 (2010). doi:10.1021/ac101716p

    Article  Google Scholar 

  92. Shen, W., Tian, D., Cui, H., Yang, D., Bian, Z.: Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin I using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles as labels. Biosens. Bioelectron. 27(1), 18–24 (2011). doi:10.1016/j.bios.2011.05.022

    Article  Google Scholar 

  93. NHLBI: NHLBI Fact book, fiscal year 2008. Bethesda (MD): National Heart, Lung, and Blood Institute (2009)

    Google Scholar 

  94. Group USCSW: United States cancer statistics: 1999–2007 incidence and mortality web-based report. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. www.cdc.gov/uscs (2010)

  95. Waggoner, P.S., Varshney, M., Craighead, H.G.: Detection of prostate specific antigen with nanomechanical resonators. Lab Chip 9(21), 3095–3099 (2009). doi:10.1039/B907309B

    Article  Google Scholar 

  96. Truong, P.L., Kim, B.W., Sim, S.J.: Rational aspect ratio and suitable antibody coverage of gold nanorod for ultra-sensitive detection of a cancer biomarker. Lab Chip 12(6), 1102–1109 (2012). doi:10.1039/C2LC20588B

    Article  Google Scholar 

  97. Chuah, K., Lai, L.M.H., Goon, I.Y., Parker, S.G., Amal, R., Justin Gooding, J.: Ultrasensitive electrochemical detection of prostate-specific antigen (PSA) using gold-coated magnetic nanoparticles as ‘dispersible electrodes’. Chem. Commun. 48(29), 3503–3505 (2012). doi:10.1039/C2CC30512G

    Article  Google Scholar 

  98. Nagrath, S., Sequist, L.V., Maheswaran, S., Bell, D.W., Irimia, D., Ulkus, L., Smith, M.R., Kwak, E.L., Digumarthy, S., Muzikansky, A., Ryan, P., Balis, U.J., Tompkins, R.G., Haber, D.A., Toner, M.: Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173), 1235–1239 (2007). doi:10.1038/nature06385

    Article  ADS  Google Scholar 

  99. Viswanathan, S., Rani, C., Ribeiro, S., Delerue-Matos, C.: Molecular imprinted nanoelectrodes for ultra sensitive detection of ovarian cancer marker. Biosens. Bioelectron. 33(1), 179–183 (2012). doi:10.1016/j.bios.2011.12.049

    Article  Google Scholar 

  100. Zhu, H., Yaglidere, O., Su, T.-W., Tseng, D., Ozcan, A.: Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip 11(2), 315–322 (2011). doi:10.1039/C0LC00358A

    Article  Google Scholar 

  101. Wong, A.P., Gupta, M., Shevkoplyas, S.S., Whitesides, G.M.: Egg beater as centrifuge: isolating human blood plasma from whole blood in resource-poor settings. Lab Chip 8(12), 2032–2037 (2008). doi:10.1039/B809830C

    Article  Google Scholar 

  102. Martinez, A.W., Phillips, S.T., Whitesides, G.M., Carrilho, E.: Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82(1), 3–10 (2009). doi:10.1021/ac9013989

    Article  Google Scholar 

  103. Martinez, A.W., Phillips, S.T., Whitesides, G.M.: Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Nat. Acad. Sci. 105(50), 19606–19611 (2008). doi:10.1073/pnas.0810903105

    Article  ADS  Google Scholar 

  104. Nie, Z., Nijhuis, C.A., Gong, J., Chen, X., Kumachev, A., Martinez, A.W., Narovlyansky, M., Whitesides, G.M.: Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10(4), 477–483 (2010). doi:10.1039/B917150A

    Article  Google Scholar 

  105. Martinez, A.W., Phillips, S.T., Nie, Z., Cheng, C.-M., Carrilho, E., Wiley, B.J., Whitesides, G.M.: Programmable diagnostic devices made from paper and tape. Lab Chip 10(19), 2499–2504 (2010). doi:10.1039/C0LC00021C

    Article  Google Scholar 

  106. Kim, D.-H., Lu, N., Ma, R., Kim, Y.-S., Kim, R.-H., Wang, S., Wu, J., Won, S.M., Tao, H., Islam, A., Yu, K.J., Kim, T-i, Chowdhury, R., Ying, M., Xu, L., Li, M., Chung, H.-J., Keum, H., McCormick, M., Liu, P., Zhang, Y.-W., Omenetto, F.G., Huang, Y., Coleman, T., Rogers, J.A.: Epidermal electronics. Science 333(6044), 838–843 (2011). doi:10.1126/science.1206157

    Article  ADS  Google Scholar 

  107. Mahler, G.J., Esch, M.B., Glahn, R.P., Shuler, M.L.: Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol. Bioeng. 104(1), 193–205 (2009). doi:10.1002/bit.22366

    Article  Google Scholar 

  108. Kimura, H., Yamamoto, T., Sakai, H., Sakai, Y., Fujii, T.: An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip 8(5), 741–746 (2008). doi:10.1039/B717091B

    Article  Google Scholar 

  109. Sung, J.H., Yu, J., Luo, D., Shuler, M.L., March, J.C.: Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11(3), 389–392 (2011). doi:10.1039/C0LC00273A

    Article  Google Scholar 

  110. Ghaemmaghami, A.M., Hancock, M.J., Harrington, H., Kaji, H., Khademhosseini, A.: Biomimetic tissues on a chip for drug discovery. Drug Discovery Today 17(3–4), 173–181 (2012). doi:10.1016/j.drudis.2011.10.029

    Article  Google Scholar 

  111. Domansky, K., Inman, W., Serdy, J., Dash, A., Lim, M.H.M., Griffith, L.G.: Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 10(1), 51–58 (2010). doi:10.1039/B913221J

    Article  Google Scholar 

  112. Khetani, S.R., Bhatia, S.N.: Microscale culture of human liver cells for drug development. Nat Biotech 26(1), 120–126 (2008). doi:10.1038/nbt1361

    Article  Google Scholar 

  113. Toh, Y.-C., Zhang, C., Zhang, J., Khong, Y.M., Chang, S., Samper, V.D., van Noort, D., Hutmacher, D.W., Yu, H.: A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 7(3), 302–309 (2007). doi:10.1039/B614872G

    Article  Google Scholar 

  114. van Midwoud, P.M., Merema, M.T., Verpoorte, E., Groothuis, G.M.M.: A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip 10(20), 2778–2786 (2010). doi:10.1039/C0LC00043D

    Article  Google Scholar 

  115. Kang, J.H., Krause, S., Tobin, H., Mammoto, A., Kanapathipillai, M., Ingber, D.E.: A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip (2012). doi:10.1039/C2LC40072C

    Google Scholar 

  116. Frimat, J.-P., Becker, M., Chiang, Y–.Y., Marggraf, U., Janasek, D., Hengstler, J.G., Franzke, J., West, J.: A microfluidic array with cellular valving for single cell co-culture. Lab Chip 11(2), 231–237 (2011). doi:10.1039/C0LC00172D

    Article  Google Scholar 

  117. Hong, S., Pan, Q., Lee, L.P.: Single-cell level co-culture platform for intercellular communication. Integrative Biology 4(4), 374–380 (2012). doi:10.1039/C2IB00166G

    Article  Google Scholar 

  118. Sung, J.H., Shuler, M.L.: A micro cell culture analog (μCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9(10), 1385–1394 (2009). doi:10.1039/B901377F

    Article  Google Scholar 

  119. Raghavan, S., Nelson, C.M., Baranski, J.D., Lim, E., Chen, C.S.: geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Eng. Part A 16(7), 2255–2263 (2010). doi:10.1089/ten.tea.2009.0584

    Article  Google Scholar 

  120. Chung, S., Sudo, R., Mack, P.J., Wan, C.-R., Vickerman, V., Kamm, R.D.: Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9(2), 269–275 (2009). doi:10.1039/B807585A

    Article  Google Scholar 

  121. Gunther, A., Yasotharan, S., Vagaon, A., Lochovsky, C., Pinto, S., Yang, J., Lau, C., Voigtlaender-Bolz, J., Bolz, S–.S.: A microfluidic platform for probing small artery structure and function. Lab Chip 10(18), 2341–2349 (2010). doi:10.1039/C004675B

    Article  Google Scholar 

  122. Shao, J., Wu, L., Wu, J., Zheng, Y., Zhao, H., Jin, Q., Zhao, J.: Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Lab Chip 9(21), 3118–3125 (2009). doi:10.1039/B909312E

    Article  Google Scholar 

  123. Tourovskaia, A., Li, N.Z., Folch, A.: Localized acetylcholine receptor clustering dynamics in response to microfluidic focal stimulation with agrin. Biophys. J. 95(6), 3009–3016 (2008). doi:10.1529/biophysj.107.128173

    Article  ADS  Google Scholar 

  124. Kelley, D.E., He, J., Menshikova, E.V., Ritov, V.B.: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51(10), 2944–2950 (2002). doi:10.2337/diabetes.51.10.2944

    Article  Google Scholar 

  125. Nagamine, K., Kawashima, T., Sekine, S., Ido, Y., Kanzaki, M., Nishizawa, M.: Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab Chip 11(3), 513–517 (2011). doi:10.1039/C0LC00364F

    Article  Google Scholar 

  126. Kaji, H., Ishibashi, T., Nagamine, K., Kanzaki, M., Nishizawa, M.: Electrically induced contraction of C2C12 myotubes cultured on a porous membrane-based substrate with muscle tissue-like stiffness. Biomaterials 31(27), 6981–6986 (2010). doi:10.1016/j.biomaterials.2010.05.071

    Article  Google Scholar 

  127. Bajaj, P., Reddy, B., Millet, L., Wei, C., Zorlutuna, P., Bao, G., Bashir, R.: Patterning the differentiation of C2C12 skeletal myoblasts. Integrative Biology 3(9), 897–909 (2011). doi:10.1039/C1IB00058F

    Article  Google Scholar 

  128. Huh, D., Matthews, B.D., Mammoto, A., Montoya-Zavala, M., Hsin, H.Y., Ingber, D.E.: Reconstituting organ-level lung functions on a chip. Science 328(5986), 1662–1668 (2010). doi:10.1126/science.1188302

    Article  ADS  Google Scholar 

  129. Blake, A.J., Rodgers, F.C., Bassuener, A., Hippensteel, J.A., Pearce, T.M., Pearce, T.R., Zarnowska, E.D., Pearce, R.A., Williams, J.C.: A microfluidic brain slice perfusion chamber for multisite recording using penetrating electrodes. J. Neurosci. Methods 189(1), 5–13 (2010). doi:10.1016/j.jneumeth.2010.02.017

    Article  Google Scholar 

  130. Ingber, D.: Spleen-on-a-chip, sepsis therapeutic device. Hansjörg Wyss Institute for Biologically Inspired Engineering at Harvard University. http://www.darpa.mil/WorkArea/DownloadAsset.aspx?id=2147485154 (2012). Accessed 30 April 2012

  131. Baker, M.: Tissue models: A living system on a chip. Nature 471(7340), 661–665 (2011). doi:10.1038/471661a

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatice Ceylan Koydemir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ceylan Koydemir, H., Külah, H., Özgen, C. (2013). Thin Film Biosensors. In: Nazarpour, S. (eds) Thin Films and Coatings in Biology. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2592-8_8

Download citation

Publish with us

Policies and ethics