Skip to main content
Log in

Physicochemical Investigations on Solid Lipid Nanoparticles and on Oil-Loaded Solid Lipid Nanoparticles: A Nuclear Magnetic Resonance and Electron Spin Resonance Study

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Recently, colloidal dispersions made of mixtures from solid and liquid lipids have been described to combine controlled-release characteristics with higher drug-loading capacities than solid lipid nanoparticles (SLNs). It has been proposed that these nanostructured lipid carriers (NLCs) are composed of oily droplets that are embedded in a solid lipid matrix. The present work investigates the structure and performance of NLCs.

Methods. Colloidal lipid dispersions were produced by high-pressure homogenization and characterized by laser diffraction, photon correlation spectroscopy, wide-angle x-ray scattering, and differential scanning calorimetry. Proton nuclear magnetic resonance spectroscopy and electron spin resonance experiments were performed to investigate the mobility of the components and the molecular environment of model drugs. Furthermore, a nitroxide reduction assay with ascorbic acid was conducted to explore the accessibility of the lipid model drug from the outer aqueous phase.

Results. Proton nuclear magnetic resonance spectra clearly demonstrate that NLC nanoparticles differ from nanoemulsions and from SLNs by forming a liquid compartment that is in strong interaction to the solid lipid. The electron spin resonance model drug was found to be accommodated either on the particle surface with close water contact (SLN) or additionally in the oil (NLC). The oil compartment must be localized on the particle surface, because it can be easily reached by ascorbic acid.

Conclusion. Neither SLN nor NLC lipid nanoparticles showed any advantage with respect to incorporation rate or retarded accessibility to the drug compared with conventional nanoemulsions. The experimental data let us conclude that NLCs are not spherical solid lipid particles with embedded liquid droplets, but they are rather solid platelets with oil present between the solid platelet and the surfactant layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Siekmann and K. Westesen. Submicron-sized parenteral carrier systems based on solid lipids. Pharm. Pharmacol. Lett. 1:123-126 (1992).

    Google Scholar 

  2. R. H. MÜller, W. Mehnert, J.-S. Lucks, C. Schwarz, A. zur MÜhlen, H. Weyhers, C. Freitas, and D. RÜhl. Solid lipid nanoparticles (SLN)—an alternative colloidal carrier system for controlled drug delivery. Eur. J. Biopharm. 41:62-69 (1995).

    Google Scholar 

  3. R. H. MÜller, K. MÄder, and S. Gohla. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur. J. Biopharm. 50:161-177 (2000).

    Google Scholar 

  4. W. Mehnert and K. MÄder. Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev. 40:165-196 (2001).

    Google Scholar 

  5. K. Westesen, H. Bunjes, and M. H. J. Koch. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Release 48:223-236 (1997).

    Google Scholar 

  6. K. Westesen and B. Siekmann. Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles. Int. J. Pharm. 151:35-45 (1997).

    Google Scholar 

  7. V. Jenning, A. F. ThÜnemann, and S. H. Gohla. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int. J. Pharm. 199:167-177 (2000).

    Google Scholar 

  8. R. H. MÜller, M. Radtke, and S. A. Wissing. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm. 242:121-128 (2002).

    Google Scholar 

  9. V. Jenning, K. MÄder, and S. H. Gohla. Solid lipid nanoparticles (SLN™) based on binary mixtures of liquid and solid lipids: a 1H-NMR study. Int. J. Pharm. 25:15-21 (2000).

    Google Scholar 

  10. M. Bockisch. Nahrungsfette und-Öle, Ulmer, Stuttgart, 1993.

    Google Scholar 

  11. A. Fischer-Carius. Untersuchungen an extrudierten und sphÄronisierten Matrixpellets mit retardierter Wirkstoffreigabe, Ph.D. Thesis, Free University of Berlin, Berlin, 1998.

    Google Scholar 

  12. H. Bunjes, K. Westesen, and M. H. J. Koch. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int. J. Pharm. 129:159-173 (1996).

    Google Scholar 

  13. ISO/DIS13320-1. KorngrÖßenanalyse-Leitfaden fÜr Laserbeugungsverfahren, Beuth Verlag, Berlin, Wien and ZÜrich, 1997.

    Google Scholar 

  14. M. Wohlgemuth. Diffusionsexperimente an Nanokapseldispersionen: GrÖßenverteilung, Wirkstoffreisetzung und andere dynamische PhÄnomene, Ph.D. Thesis, Gerhard-Mercator-UniversitÄt, Duisburg, 2002, 194.

    Google Scholar 

  15. A. A. Ribeiro and E. A. Dennis. Structure and dynamics by NMR and other methods. In M. J. Schick (ed), Nonionic Surfactants, Physical Chemistry, Marcel Dekker, New York, 1987, pp. 971-1009.

    Google Scholar 

  16. K. Jores. Characterization of solid lipid nanoparticles (SLN™)—how to optimize the quantity of surfactants. Proc. Intern. Symp. Control. Release Bioact. Mater. 27:1092-1093 (2000).

    Google Scholar 

  17. H. Bunjes, M. Drechsler, M. H. J. Koch, and K. Westesen. Incorporation of the model drug ubidecarone into solid lipid particles. Pharm. Res. 18:287-293 (2001).

    Google Scholar 

  18. H. Bunjes, B. Siekmann, and K. Westesen. Emulsions of supercooled melts—a novel drug delivery system. In S. Benita (ed), Submicron Emulsions in Drug Targeting and Delivery, Harwood Academic Publishers, Chur, 1998, pp. 175-204.

    Google Scholar 

  19. C. Mayer, D. Hoffmann, and M. Wohlgemuth. Structural analysis of nanocapsules by nuclear magnetic resonance. Int. J. Pharm. 242:37-46 (2002).

    Google Scholar 

  20. K. MÄder, H. M. Swartz, R. StÖsser, and H.-H Borchert. The application of EPR spectroscopy in the field of pharmacy. Pharm. Unserer Zeit 49:97-101 (1994).

    Google Scholar 

  21. BASF.Technical information for Lutrol F 68™. (1997).

  22. P. Alexandridis and T. A. Hatton. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Coll. Surf. B 96:1-46 (1995).

    Google Scholar 

  23. A. Haberland, C. S. Maia, K. Jores, M. DÜrrfeld, W. Mehnert, I. Schimke, B. Christ, and M. SchÄfer-Korting. Albumin effects on drug absorption and metabolism in reconstructed epidermis and excised pig skin. Altex 20:3-9 (2003).

    Google Scholar 

  24. K. Westesen and H. Bunjes. Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix? Int. J. Pharm. 115:129-131 (1995).

    Google Scholar 

  25. B. Siekmann and K. Westesen. Thermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles. Coll. Surf. B 3:159-175 (1994).

    Google Scholar 

  26. H. Bunjes, M. H. J. Koch, and K. Westesen. Effect of particle size on colloidal solid triglycerides. Langmuir 16:5234-5241 (2000).

    Google Scholar 

  27. V. Jenning. Feste Lipid-Nanopartikel (SLN™) als TrÄgersystem fÜr die dermale Applikation von Retinol: Wirkstoffinkorporation,-freisetzung und Struktur, Ph.D. thesis, Freie UniversitÄt Berlin, 1999.

    Google Scholar 

  28. K. Larsson. Classification of glyceride crystal forms. Act. Chem. Scand. 20:2255-2260 (1966).

    Google Scholar 

  29. D. M. Small. The Physical Chemistry of Lipids: from Alkanes to Phospholipids, Plenum Press, New York, 1986.

    Google Scholar 

  30. J. W. Hagemann. Thermal behavior and polymorphism of acylglycerides. In K. Sato and N. Garti (eds), Crystallization and Polymorphism of Fats and Fatty Acids, Marcel Dekker, New York and Basel, 1988, pp. 9-95.

    Google Scholar 

  31. L. Hernqvist. Crystal structures of fats and fatty acids. In K. Sato and N. Garti (eds), Crystallization and Polymorphism of Fats and Fatty Acids, Marcel Dekker, New York and Basel, 1988, pp. 97-137.

    Google Scholar 

  32. D. Precht. Fat crystal structure in cream and butter. In N. Garti and K. Sato (eds), Crystallization and Polymorphisms of Fats and Fatty Acids, Marcel Dekker, New York and Basel, 1988, pp. 305-361.

    Google Scholar 

  33. V. Jenning and S. Gohla. Comparison of wax and glyceride solid lipid nanoparticles (SLN™). Int. J. Pharm. 196:219-222 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Mäder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jores, K., Mehnert, W. & Mäder, K. Physicochemical Investigations on Solid Lipid Nanoparticles and on Oil-Loaded Solid Lipid Nanoparticles: A Nuclear Magnetic Resonance and Electron Spin Resonance Study. Pharm Res 20, 1274–1283 (2003). https://doi.org/10.1023/A:1025065418309

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025065418309

Navigation